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Chapter 1

2025/9/8

Some goals of this course.

• What is Abstract Algebra?
Goal: study algebraic operations, namely +,−,×,÷.

• Group Theory, Ring Theory and Field Theory, ordered in the complexity of operations
endowed with.

• In group theory, we will spend some time on groups and maps between them. Subsequently,
the subgroups of a group, group action1 and group classification.

• In ring theory, we will similarly spend time on rings and maps between them. Afterwards
ideals of rings, example of rings and perhaps modules. More advanced topics of ring theory
will be discussed in the course Commutative Algebra.

• In field theory, we will start by field extensions, automorphisms and finally Galois Theory.

1.1 Groups
Definition 1.1. If a set G is endowed with a binary operation

∗ : G×G→ G

(x, y) 7→ x ∗ y,

then we call G

1. a semigroup if ∗ satisfies the condition

(x ∗ y) ∗ z = x ∗ (y ∗ z) = x ∗ y ∗ z.

2. a monoid if it is a semigroup and it has an identity element eG satisfying

x ∗ eG = eG ∗ x = x, ∀x ∈ G.

1In this course, we only care 2 group actions.

3



4 CHAPTER 1. 2025/9/8

3. a group if it is a monoid and for all g ∈ G there exists g−1 ∈ G such that

g ∗ g−1 = g−1 ∗ g = eG.

Some conventions for simplicity.

• (G, ∗) = G, e.g. Z is a group under addition. Note that Z is not a group under multiplica-
tion, as 0 does not have an inverse.

• x ∗ y = xy.

• The operation ∗ is often called group law or group multiplication despite the fact that ∗
might not be an actual multiplication.

Example. Some examples of groups.

1. Z,Q,R,C are groups under additions with 0 as the identity element.

2. Matrices. Mn(R) = {A = (aij) : n× n matrix, aij ∈ R} is a group under addition.

3. Polynomials. R[x] = {polynomials with coefficients in R} is a group under addition.

Definition 1.2. A group G = (G, ∗) is abelian or commutative if

∀x, y ∈ G, x ∗ y = y ∗ x.

The reason why we call ∗ multiplication rather than addition is that addition always implies the
commutative law.

Example. Matrix multiplication. For any A,B ∈Mn(R), we have AB ∈Mn (R). The identity
e = In. Yet Mn (R) is but a monoid as there exists A without an inverse. Also note that
AB 6= BA for some A,B ∈Mn(R).

1.2 Subgroups
For a subset H of a group G, the question rises “when does H have a group struction inherited
from G”.

Definition 1.3. If H ⊂ G = (G, ∗) is a subset, we say H is a subgroup of G if (H, ∗) is a group.
And we write H ≤ G.

The above statement implies the following.

1. ∗ is a binary operation. (Fails for G = Z and H = 2Z+ 1.)

2. H contains an identity.

3. ∀g ∈ H, g−1 ∈ H.

Proposition 1.1. Nonempty subset H ⊂ G is a subgroup if it is closed under division, i.e.
∀x, y ∈ H, we have xy−1 ∈ H.

Proof. First e = xx−1 ∈ H for some x, so H must contain identity. Then ∀x ∈ H, x−1 = ex−1 ∈
H. Finally, ∀x, y ∈ H, y−1 ∈ H and xy = x

(
y−1

)−1 ∈ H.
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Example. Z has subgroups kZ = {kn : n ∈ Z}, which are closed under subtraction for each
k ∈ Z. In fact, these are all the subgroups of Z.

Definition 1.4. Suppose G a group, a ∈ G an element. We define

〈a〉 ≜ {an : n ∈ Z} .

Lemma 1.2. 〈a〉 is a subgroup of G.

Proof. For all an, am ∈ 〈a〉, an (am)
−1

= an−m ∈ 〈a〉.

Lemma 1.3. 〈a〉 is abelian.

Hence 〈a〉 is called a cyclic subgroup of G.

Definition 1.5. G is called a cyclic group if G = 〈a〉 for some a ∈ G.

Example. 1. G = Z/nZ =
{
0, 1, . . . , n− 1

}
, with a + b = a+ b (mod n), is a group (and

cyclic) for prime n.

2. Z = 〈1〉 is an infinite cyclic group.

Definition 1.6. Let the order of a group G be its cardinality as a set: |G| = cardG. For a ∈ G,
let the order of a be ord(a) ≜ |〈a〉|.

Example. If G = Z, |G| =∞, ∀k ∈ Z \ {0}, ord(k) =∞.
Any a ∈ G, ord(a) = 1 ⇐⇒ a = e.

Now we have enough tools to prove that each subgroup of Z is equal to some 〈k〉.

Lemma 1.4. The subgroup of a cyclic group remains cyclic.

We consider the case G = Z = 〈1〉: ∀H ≤ Z, H = 〈k〉 for some k ∈ Z.

Proof. Take k as the smallest positive integer in H, then 〈k〉 = H. Since

a ∈ H ≤ G =⇒ 〈a〉 ≤ H

Now if H 6= 〈k〉, ∃0 6= k′ ∈ H, k′ is not a multiple of k, but gcd(k, k′) < k is contained in H.

Another question is how to classify all the cyclic groups. Suppose G = 〈a〉 for some a.

• ord(a) = |G| =∞ implies G =
{
. . . , a−1, a0 = e, a1 = a, a2, . . .

}
and an 6= am if n 6= m.

• ord(a) = |G| = n implies G = {a0 = e, a1, a2, . . . , an−1}.

Proof. If |G| = ∞, ak 6= am once k 6= m. This is because ak = am and k 6= m implies
ak−m = aka−m = e and hence k = m, which provides a contradiction. The rest follows suit.
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2.1 Subgroups & Presentations of Groups
For a group G, it is a set G plus the group law ∗. H is subgroup ⇐⇒ H ⊆ G and (H, ∗) is a
group. Given G, there are

• the trivial subgroups: {e} and G.

• non-trivial subgroups, e.g.

a ∈ G ; 〈a〉 ≤ G

{a} ⊆ G ; 〈{a}〉 ≤ G,

with the former a cyclic subgroup, and the latter a subgroup generated by a subset {a}.

Definition 2.1. Define 〈S〉 as the subgroup generated by S.

〈S〉 ≜
⋂

H≤G,S⊆H

H.

Here we use the simple fact: If we have H1 ≤ G and H2 ≤ G, then H1 ∩H2 ≤ G.
Remark. H1 ∪H2 6≤ G.

Proposition 2.1.

〈S〉 =

{∏
finite

ai : ai ∈ S or a−1
i ∈ S

}
.

Proof. We prove the following three steps.

1. RHS is a subgroup.

2. S ⊆ RHS.

3. 〈S〉 = RHS by showing that RHS is the smallest one.

For 2, S = {a : a ∈ S} ⊆ RHS. For 3, we shoulde prove ∀H ≤ G(H ⊇ S =⇒ H ⊇ RHS). This
is because if H ⊇ S, since H is closed under division,

∏
finite ai ∈ H, ai or a−1

i ∈ S. These two
are almost free.

7
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For 1, we claim that for any
∏

ai,
∏

bi ∈ RHS, (
∏

ai) (
∏

bi)
−1 ∈ H. Given the fact that(

n∏
i=1

bi

)−1

= bnbn−1 · · · b1

we can write (
m∏
i=1

ai

)(
n∏

i=1

bi

)−1

=

m∏
i=1

ai

n∏
i=1

b−1
n+1−i ∈ RHS.

If H ≤ G and H = 〈S〉, then we call S the generators of H or H is generated by S.

Example. G = Z, and Z = 〈1〉.

Example. We have GLn(R) = {A ∈Mn(R) : det(A) 6= 0} generated by diagnoal and elementary
matrices.

Example (Why?). We have SL2(Z) = {A ∈M2(Z) : det(A) = 1} generated byÅ
0 −1
1 0

ã
&

Å
1 1
0 1

ã
.

Example. H = Z/2Z×Z/2Z = {(0, 0), (1, 0), (0, 1), (1, 1)}. (H,+) is a group under the natural
addition (a, b) + (c, d) = (a + c, b + d), which is generated by (1, 0) and . Note that H is none
cyclic because there is not an element of order 4 in H.

Remark. G is a cyclic group iff there exists a ∈ G such that ord(a) = |G|.
If we have G = 〈S〉 for some S ⊆ G, we know very little from the definition of 〈S〉.

Definition 2.2. For any set S, we define a free group generated by S. 〈S〉free contains all the
words composed of letters in S.

〈S〉free ≜
{
a1 · · · an : ai ∈ S or S−1

}
,

with S−1 defined formally as
{
a−1
i : ai ∈ S

}
. The group law of 〈S〉free is the juxtaposition of

word. Note that the identity is the empty word.

Example. For S = {a}, 〈S〉free = 〈a〉 = Z.

Example. For S = {a, b}, S−1 = {a−1, b−1}. The structure of 〈S〉free is very complex and very
far from Z× Z.

The reason we call the group defined above “free group”, is that from any set we obatin a
group, with no extra relations. And any group G can be obtained by adding more relations to a
free group.

Example. • Z/2Z comes from a cyclic free group as it is generated by a single element.

Z/2Z = 〈a | aa = e〉free = {e, a}.

• Z/2Z× Z/2Z comes from the free group with relations

〈a, b | aa = e, bb = e, ab = ba〉free = {e, a, b, ab = ba}.
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• SL2(Z), recall the previous example, comes from the free group with relations
〈a, b | aaaa = e, ab = b?a?〉free.

Definition 2.3. If G a group, the center of G
C(G) ≜ {g ∈ G : gh = hg, ∀h ∈ G} .

Note that C(G) is an abelien subgroup of G.
Definition 2.4. For g ∈ G, the centralizer of g

Cg(G) ≜ {h ∈ G : hg = gh} .

Cg(G) is also a subgroup.

2.2 Symmetric Group
This is an important example in group theory.
Definition 2.5. Let Σ be a set, then

SΣ ≜ {f : Σ→ Σ : f is bijective} .
(SΣ, ◦) is a group under composition. If Σ is a finite set, namely, |Σ| = n, we can use Sn to
denote SΣ.

We are concerned with the following topics.
• Order of elements in Sn.

• Subgroups of Sn.

• Normal subgroups. (Next Week)
We mainly consider finite symmetric groups.
Proposition 2.2. 1. Sn is abelien iff n ≤ 2.

2. S3 is the smallest non-abelien finite group.
In order to better describe elements in S3, we need the definition below.

Definition 2.6. A m-cycle (a1 a2 . . . am), ai ∈ Σ is a map
f : Σ→ Σ

ai 7→ ai+1, am+1 = a1

b 7→ b, b 6= ai

Proposition 2.3. For any σ ∈ Sn, there exists a unique decomposition
σ = τ1 · · · τk,

where τi are disjoint cycles. Here, Σi and Σj are disjoint if |Σi| ∩ |Σj | = ∅ and |(a1 · · · am)| =
{a1, . . . , am}.

The proof is trivial.

Sketchy Proof of Proposition 2.2. 1. (1 2)(2 3) = (1 2 3) 6= (1 3 2) = (2 3)(1 2).

2. For groups of order 1,2,3,5, they must be cyclic. For groups of order 4, there are two
possibilities Z/4Z and Z/2Z× Z/2Z.
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3.1 Symmetric Group
Recall that

Sn = {permutation of the set {1, 2, . . . , n}} .
It is a group under composition. We kwow the following facts.

• |Sn| = n!.

• For any a ∈ Sn, according to cycle decomposition, we have the unique formula up to a
permutation of cycles

a =
∏

disjoint
τi,

where τi are cycles. Since τi, τj commute for each pair (i, j), ord(a) = lcm(ord(τi)) =
lcm(|τi|).

• Sn is generated by cycles. Further, by 2-cycles or transportations. And even further, either
by (1 i), 2 ≤ i ≤ n or by (1 2) and (1 2 3 · · · n).

Definition 3.1 (Alternating group).

An = {even permutations in Sn} .

Some well-known facts.

• |An| = |Sn|
2 = n!

2 .

• An ≤ Sn.

• An is generated by 3-cycles.

3.2 Coset of subgroups & Quotient Groups
Definition 3.2. For H ≤ G a subgroup, ∀a ∈ G, we define

aH ≜ {ah : h ∈ H} ⊆ G,

called a left coset of H. Similarly we can define the right cosets.

11
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We have some easy properties.

• |H| = |aH| = |Ha|, ∀a ∈ G.

• aH, or Ha, is a subgroup iff a ∈ H.

We can now consider new players: aH. Consider, what is the relation between aH, bH and abH,
i.e. do we have

(aH)(bH) = (ab)H?

We hope that there is an algebraic relation on cosets. But unfortunately, this idea does not hold
in general.

Definition 3.3. If H ≤ G, we say H is a normal subgroup of G if the following equivalent
conditions hold

1. (aH)(bH) = (ab)H, ∀a, b ∈ G.

2. aH = Ha, ∀a ∈ G.

3. H = aHa−1, ∀a ∈ G.

Example. 1. If G is an abelian group, then ∀H ≤ G is a normal group.

2. If G = S3, we have subgroups H1 = 〈(1 2)〉 and H2 = 〈(1 2 3)〉.

Proposition 3.1. If H ≤ G, we have

G =
∐
a∈G

aH =
∐
a∈G

Ha.

And aH ∩ bH = ∅ if aH 6= bH.

Example. H ≤ G, |H| = 1
2 |G|, then H is a normal subgroup. Especially, An is a normal

subgroup of Sn.
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4.1 Cosets & Quotient groups
Theorem 4.1 (Lagrange’s Theorem). If H ≤ G, then if |G| < +∞, the number of cosets is

|G|
|H|

,

such number is denoted by [G : H], called the index of H in G.

Corollary. If H ≤ G, and |G| < +∞, then |H| | |G|. In particular, ∀a ∈ G, H = 〈a〉, ord(a)||G|.

Corollary. If |G| = p is a prime number, then G = 〈a〉 is a cyclic group and hance abelian.

Proof. Take a 6= e ∈ G, ord(a) 6= 1 and ord(a) | |G| = p, so ord(a) = p. It follows that |〈a〉| = p
and 〈a〉 = G.

Proposition 4.2. If |G| = p2, where p prime, then G is also abelian but not necessarily cyclic.

Part of Proof. Consider C(G) ≤ G. By Lagrange’s Theorem, |C(G)| | p2. |C(G)| = 1, p or p2.

1. If |C(G)| = p2, C(G) = G, we obtain the desired result.

2. If |C(G)| = p, [G : C(G)] = |G|
|C(G)| = p. The cosets of C(G) are aC(G), a2C(G), ap−1C(G)

for some a ∈ G. For any g ∈ G, g can be written as akh, h ∈ C(G). Then any two elements
akh, alh in G have (

akh
) (

alh′) = al+khh′ = al+kh′h,

because h, h′ ∈ C(G) can commute with elements in G. G is thus abelian.

3. If |C(G)| = 1, this is also impossible. See 8.

Definition 4.1. If H is a normal subgroup of G, denoted by H �G. We can define the quotient
group

G/H ≜ {aH} ,

with (aH)(bH) = (ab)H as the group law.

We have some easy properties.

13
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• G/H is a group, with identity e = eH = H.

• g = gH has an inverse g−1 = g−1H.

• |G/H| = [G : H].

Back to the case |G| = p2, |C(G)| = p. then |G/C(G)| = p and G/C(G) is a cyclic group. There
exists a ∈ G such that G/C(G) = 〈aC(G)〉 =

{
akC(G)

}
.

Recall one of the goals in group theory: to classify some finite groups. We need the following
definition.

Definition 4.2. G is a simple group if every normal subgroup of G is trivial, i.e. {e} and G.

The ultimate goal in finite group theory is to classify all the finite groups, which has been
realized. A way to simplify this monstrous task is to consider the normal subgroups and quotient
groups of finite groups1. This process terminates at simple groups. Hence to classify finite groups
is to classify simple finite groups.

Theorem 4.3. 1. An is simple when n ≥ 5.

2. A5 is the smallest non-abelian simple group.

Remark. 1. If G = Z/pZ, p is a prime, then G is an abelian simple group.

2. If G is a simple abelian group, then G is a cyclic group of prime order.

Example. • An � Sn.

• SLn(R)�GLn(R).

• H ≤ G not necessarily normal, we can define a new group

NG(H) =
{
g ∈ G : g−1Hg = H

}
called the normalizer of H in G, then H �NG(H) and H �G ⇐⇒ NG(H) = G.

1We can recover G from H and G/H from direct products and semidirect products.
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5.1 Normal subgroup & Simple group
For G a group and H ≤ G a subgroup, our question is how to show H is a normal subgroup?

1. Verify that aH = Ha, for all a ∈ G. Application: [G : H] = 2 =⇒ H �G.

2. Verify that aHa−1, for all a ∈ G. A simple observation is that aHa−1 is a subgroup of G,
so it suffices to check the generators are the same, i.e.

H = 〈S〉, ∀g ∈ S, aga−1 ∈ H.

This makes things much easier as S is usually a very small set.

Example. If G a group, define the commutator of G.

[G,G] ≜ 〈aba−1b−1 | a, b ∈ G〉 ≤ G.

We claim [G,G]�G.

Proof. For each generator aba−1b−1 ∈ [G,G], and g ∈ G, then

g(aba−1b−1)g−1 = (gag−1)(gbg−1)(ga−1g−1)(gb−1g−1) ∈ [G,G].

Remark. G/[G,G] = Gab is an abelian group, called the abelianization of G. 1

For simple groups, we have an analogous question: “how to determine whether G is a simple
group?”

Example. If |G| < +∞,

1. |G| = 4 =⇒ G is not a simple group as G is abelian.

2. |G| = 6, if G = S3 then G is not simple since C3
∼= A3 � S3.

Recall the following theorem about the smallest non-abelian simple finite group.
1For example, for a topological space X which is simplicial,

π1(X)ab = H1(X,Z).

15
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Theorem 5.1. The smallest non-abelian simple finite group is A5.

There are two steps of difficulty.

1. A5 is simple.

2. A5 is the smallest among such. Or more explicitly,

(a) |G| < 60 and non-abelian, then G is non-abelian.
(b) |G| = 60 and simple, then G = A5.

Today we shall deal with the first step. We need a tool beforehand.

Definition 5.1. a ∈ G, its conjugacy class [a] =
{
gag−1 : g ∈ G

}
.

Then H ≤ G is normal iff H is a union of conjugacy classes.

Lemma 5.2. τ ∈ Sn, and (a1 · · · ak) is a k-cycle, then

τ(a1 · · · ak)τ−1 = (τ(a1) τ(a2) · · · τ(ak)).

It follows naturally that conjugacy classes in Sn are indentical to types of cycle decomposition.
However, for σ ∈ An, [σ]An ⊆ [σ]Sn and the equivalence often fails. In fact, [σ]An = [σ]Sn iff σ
commutes with some 2-cycle.

Theorem 5.3. An is a non-abelian simple group iff n ≥ 5.

Sketch of Proof. When n < 5,

1. n = 2, 3, abelian.

2. n = 4, non-abelian, as V = e ∪ [(1 2)(3 4)] the Klein 4-group is a normal subgroup.

When n ≥ 5, given H � An, H 6= {e}, we need to show H = An. That is to say, H contains
a subset that generates An. If H contains a 3-cycle, then H contains all (1 2 k). And H must
contain a 3-cycle, so H = An.
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Recall that in the previous leture, we began the proof of An being simple when n ≥ 5.

6.1 Group homomorphism
Definition 6.1. If G, G′ are groups, then a group homomorphism f : G → G′ is a map, such
that it preserves the group law, i.e.

f(ab) = f(a)f(b), ∀a, b ∈ G.

Proposition 6.1. f(eG) = eG′ , f(a−1) = f(a)−1.

Proof. Since f(ab) = f(a)f(b) for any a, b ∈ G, take a = b = eG, f(eG) = f(eG)f(eG), and by
cancelling out one f(eG), we get f(eG) = eG′ . Similarly,

eG′ = f(aa−1) = f(a)f(a−1) =⇒ f(a−1) = f(a)−1.

Example. 1. Integers modulo n.

f : Z→ Z/nZ
k 7→ k (mod n).

2. The exponential map.

R→ C∗

a 7→ exp(ia).

3. The determinant,

det : GLn(R)→ R∗

A 7→ detA.

Definition 6.2. A group homomorphism f : G→ G′ is an isomorphism if there is also another
homomorphism g : G′ → G such that f ◦ g = idG′ and g ◦ f = idG.

17
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Definition 6.3. If f is a group homomorphism, the kernel of f is

Ker(f) ≜ {a ∈ G : f(a) = e} ,

and the image of f
Im(f) ≜ {f(a) : a ∈ G} .

Theorem 6.2 (Fundamental Theorem for group homomorphism). 1. Ker(f) � G; Im(f) ≤
G′.

2. f induces an isomorphism
f : G/Ker(f) ∼= Im(f) ≤ G′.

Proof. 1. Omitted.

2. Consider the map

f : G/Ker(f)→ G′

a 7→ f(a).

We need to verify that f is well-defined, is a group homomorphism and is bijective. All of
them are easy to see.

Remark. f is injective iff Ker(f) = {e}.
Since Ker(f)�G, we have the following corollary.

Corollary. If there exists a non-trivial group homomorphism G→ G′, then G is not simple.
For any N � G, then we have f : G → G/N, a 7→ a a quotient map, which is group homo-

morphism and Ker(f) = N .
Example (Another definition of An). An is the kernel of the sign of permutations.

sgn : Sn → Z/2Z
σ 7→ sgn(σ)

Also we have SLn(R) = Ker(det).
The consequences of Theorem (6.2) is the followings.

Theorem 6.3. G is a group, H ≤ N ≤ G and H �G,N �G, then

G/N ∼= (G/H)
/
(N/H)

Proof. 1. H �N as gHg−1 = H for any g ∈ N ⊆ G, so RHS is well-defined.

2. Construct a group homomorphism:

ϕ : G/H → G/N

aH 7→ aN.

This is obviously surjective, and well-defined. Its kernel

Ker(ϕ) = {aH : aN = N} = {aH : a ∈ N} = N/H.

Theorem 6.4. H �G, K ≤ G, then KH = HK and

K/(K ∩H) ∼= HK/H.

Proof. Just prove that HK ≤ G and consider the homomorphism K → HK/H.
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Some interesting questions of group homomorphism.

1. Given two groups, G and G′, how to tell the difference between two groups, e.g. G ∼= G′?

(a) G ≇ G′ if |G| 6= |G′|, e.g. Q/Z ≇ R/Q.
(b) If G ∼= G′, for a ∈ G, there must exist some a′ ∈ G′ s.t. ord(a) = ord(a′).

2. How to find group homomorphisms between different groups? For instance, given G and
G′, find out all the group homomorphisms ϕ : G→ G′.

(a) For G = 〈a〉 a cyclic group, consider

Aut(G) =
{
ϕ : 〈a〉

∼=→ 〈a〉
}
.

Note that Im(ϕ) = 〈ϕ(a)〉 = 〈a〉 iff ord(ϕ(a)) = ord(a), when ord(a) < +∞. Hence

Aut(G)
1:1←→ {b ∈ G : ord(b) = ord(a)} .

(b) For general G = 〈S〉, we only need to consider the image of generators. In other
words, we only need to define

ϕ : G→ G′

a ∈ S 7→ ϕ(a)

and check ϕ(a), a ∈ S satisfy the group law in G′.

7.1 Direct Product of Groups
Idea. In set theory, if we have X,Y as sets, we can define their direct product X × Y .

Definition 7.1. If G and H are groups, we define

G×H ≜ {(g, h) : g ∈ G,h ∈ H}

and (G×H)× (G×H)→ (G×H), (g1, h1)(g2, h2)→ (g1g2, h1h2).

19
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Proposition 7.1. 1. G×H is a group.

2. G×H carries projections.

G×H

G H

p q

3. There exists inclusions G
i
↪→ G×H and H

j
↪→ G×H s.t.

p ◦ i = idG, q ◦ j = idH .

Remark. The properties in Proposition 7.1 is in fact the universal property of dirct product.

Theorem 7.2. We can write G ∼= G1 ×G2 iff ∃H,K �G, H ∩K = {e} and HK = G.

Proof. It suffices to verify that the map

ϕ : H1 ×H2 → H1H2

(g1, g2) 7→ g1g2

is a group isomorphism.
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Recall. The direct product of groups.
Applications of Direct Products.

1. Fundamental Theorem for abelian groups.

Fact. If G,G′ are abelian groups, then G × G′ remains abelian. Especially, the
product of cyclic groups are abelian.

Hence it is natural to propose the converse: “any finitely generately abelian
group is isomorphic to the products of some cyclic groups.”
Remark. When |G| = 6, there is only one such abelian group, Z/6Z. When
|G| = 4, there are two, Z/4Z ≇ Z/2Z× Z/2Z.

2. Understand the structure of finite groups. For instance, given a group G of order 6, not
necessarily abelian. The idea is to consider elements in G. If g ∈ G, ord(g) | G, so
ord(g) = 1, 2, 3 or 6. If ord(g) = 1, g = e; if ord(g) = 6, G is cyclic. If ord(g) = 2 for
all g ∈ G, then G is abelian, but this is absurd. Hence we can suppose there exists g s.t.
ord(g) = 3. H = 〈g〉�G, as [G : H] = 2, so there exists g′ s.t. ord(g′) = 2 and H ′ = 〈g′〉.
So

G = HH” =

®
H ×H ′, H ′ �G

H ⋊H ′, otherwise.

8.1 Actions of Groups
Definition 8.1. For G a group and X a set, an action of group G on X is a map

· : G×X → X

(g, x) 7→ g · x.

satisfying

1. e · x = x.

2. g1 · (g2 · x) = (g1g2) · x.

Example. 1. Sn acts on {1, 2, . . . , n}.

21
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2. Let V be a vector space over F. GL(V ) acts on V .

3. Left/Right multiplication. Let G be a group, and X be a collection of certain subsets of G.
Then G×X → X, (g,H) 7→ gH can be a group action. For X, possible selections include
{H ⊆ G | |H| = n}, {cosets of H ≤ G}.

4. Adjoint action/Conjugation. G×X → X, (g,H) 7→ g−1Hg. Some possible X’s include G,
{subgroups of G, with fixed order n}.

Remark. The first example is called a symmetric representation because of the following obser-
vation.

{G-actions on X}↭
¶
G

ρ→ SX | ρ is a homomorphism
©
.

Example (Good properties). If G is a simple group and admits a group action ρ : G → SX ,
then ρ must be

1. injective, where Ker(ρ) = {e}.

2. trivial, where Ker(ρ) = G.

Assume G acts on a set X.

Definition 8.2. If x ∈ X, then

1. the stablizer of x is
Gx := {g ∈ G | g · x = x} .

2. the orbit of x is
G · x = {g · x | g ∈ G} .

Remark. The orbits of elements of X, G · x form a set of equivalence classes.

Proposition 8.1. 1. Gx ≤ G.

2. |G · x| = [G : Gx].

3. Since X =
⊔
G · x, when |X| < +∞, |G| < +∞,

|X| =
∑
|G · x| =

∑ |G|
|Gx|

.

Example. 1. Left/Right multiplication. Consider G ↷ X = G. For any x ∈ G, Gx = {e},
G · x = X = G.1

2. Adjoint action. Consider G ↷ X = G. For x ∈ G, Gx = CG(x) is the centralizer of x, and
G · x = {g−1xg | g ∈ G} is the conjugacy class of x. When |G| < +∞, we can write

|X| = |G| =
∑
G·x

|G|
CG(X)

and hence
|G| = |C(G)|+

∑
|G·x|>1

|G|
|CG(x)|

1When G · x = X for some action G ↷ X, we call such action transitive.
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Corollary. By the above formula, when |G| = pn, p prime, the center of G is never trivial, i.e.
|C(G)| > 1.

Theorem 8.2. Any group is a subgroup of some symmetric group.

Proof. Let G be a group. Consider the left multiplication action G ↷ G, which yields a group
homomorphism G

ρ→ SG. This map is injective as

Ker(ρ) =
⋃
x∈G

Gx = {e}.

8.2 Sylow’s Theorem
By Lagrange’s theorem, a subgroup H of group G satisfies |H| | |G|. Sylow’s theorem is about
the converse problem. For what divisors of |G| does there exist a subgroup H such that |H| = n?

If no additional assumptions, this fails, since we can let G = An, n ≥ 5 and m = |G|
2 , then

there is no such subgroup H as to satisfy |H| = m.

Theorem 8.3. The answer is positive if m = pn.



24 CHAPTER 8. 2025/10/13



Chapter 9

2025/10/15

9.1 Sylow’s Theorem
Theorem 9.1. If m = pr, where p is a prime, such subgroup will exist. Moreover, the number
of such groups is congruent to 1 modulo p.

There are two strategies. First is to consider the cases where m = pr | n, and r is maximal.
Such groups are called Sylow p-subgroups. And we have the following theorems.

Theorem 9.2. 1. The number of Sylow p-groups is congruent to 1 modulo p.

2. If |G| = pk, ∀r < k, ∃H ≤ G, s.t. |H| = pr.

The technique involved in the first part is also valid in the previous theorem.

Proof of the second part. Inducion on k. If |G| = pk, |G/C(G)| < pk, as |C(G)| 6= 1. Consider
the quotient map π : G→ G/C(G). For any H ≤ G/C(G), π−1(H) ≤ G and π−1(H) ⊇ C(G).

• If pr ≤ |C(G)| < |G|, this is okay by the induction hypothesis, as we can find H ′ ≤
C(G), |H| = pr.

• |G| = |C(G)|, decompose G as product of cyclic groups.

• |C(G)| < pr < |G|, let |C(G)| = pr0 . Since r > r0, take H ≤ G/C(G), where |G/C(G)| ≤
pk−1, of order |H| = pr−r0 . Then π−1(H) as order pr.

The second strategy is to prove directly, by means of a combinatorial identity.

Proof of Theorem 9.1. If pr | |G|, consider the right multiplication action of G on X ≜ {M ⊆
G | |M | = pr} and let the action be

G×X → X

(g,M) 7→Mg−1.

Analyse the orbit formula to getÇ
n

pr

å
= |X| =

∑
[Mi] =

∑ |G|
|GMi

|
. (9.1)

25
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Further, GMi
acts on Mi, so

Mi =
⊔

hj∈Mi

[hj ] =
⊔

GMi
h−1
j ,

and hence
pr = |Mi| =

∑
|GMi | = mi|GMi |.

In particular, |GMi
| = pr

mi
, GMi

is a p-group. Return to (9.1), we get∑ |G|
|GMi

|
=
∑ prk

pni
= k
Ä∑

pr−ni

ä
.

NowÇ
pr

k

å
≡
∑
r=ni

kpr−ni ≡
∑
r=ni

k ≡ k ·#(ni = r)

= k ·#([Mi] contains a subgroup GMi
) (mod pk)

≡ k ·#{subgroups of order pr} (mod pk).

where r = ni if and only if Mi = GMih
−1 for some h ∈ G. To show

N(pr) := #{subgroup of order pr} ≡ 1 (mod p),

note this formula holds for any G with |G| fixed = n. Take G be a cyclic group of order n, then
N(pr) = 1, and since the solution of kN(pr) ≡

(
n
pr

)
is independent of our selection of G, the

solution N(pr) ≡ 1 is valid for all G.

Theorem 9.3 (Sylow’s Theorem). If |G| = pks, gcd(p, s) = 1, then

1. there exists a Sylow p-subgroup,

2. let np be the number of Sylow p-subgroups, then

np | s, np ≡ 1 (mod p),

3. if H1 and H2 are Sylow p-subgroup, then they are conjugate to each other, and particularly,

np = 1 ⇐⇒ there is a normal Sylow p-subgroup.

Proof. 1. Sketch of proof without using left/right multiplication action. We can use induction
on |G|. When |G| = 1, it is okay. Suppose holds for |G| ≤ n− 1.

(a) If p | |C(G)|, consider G→ G/C(G) and use pullback of subgroups in G/C(G).
(b) If p ∤ |C(G)|, |C(G)| 6= 1, then also consider G/C(G).
(c) If |C(G)| = 1, consider the conjugate action of G on G itself.

pks = |G| = |C(G)|+
∑ |G|
|CG(gi)|

.

Modulo p to find some i s.t. gcd
Ä

|G|
|CG(gi)

, p
ä
= 1, so |CG(gi) = pks′, s′ < s. By the

induction hypothesis, CG(gi) contains a subgroup H, |H| = pk, which is also a Sylow
p-subgroup of G.
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2. Define Xp ≜ {Sylow p-subgroups of G}. By 1, Xp 6= ∅, np = |Xp| > 0. Consider the
adjoint action of G on Xp. Then

np = |Xp| =
∑ |G|
|GHi

|
=
∑ pks

pkisi
.

Modulo p at both sides,
np ≡

∑
ki=k

s

si
.

But this is hard to handle. Not finished.
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Recall Sylow’s thoerem.

Theorem 10.1. Consider a group G.

1. There exists Sylow p-subgroups.

2. np ≡ 1 (mod p), np | |G|.

3. All Sylow p-subgroups are conjugate to each other.

Continuation of Proof. 2. Instead of using G acting on Xp, we consider Q ∈ Xp acting on
Xp, where Q is an arbitrary subgroup in Xp. Then

np = |Xp| =
∑ |Q|
|QHi

|
=
∑ pk

|QHi
|
.

The size of Q only has one prime factor, namely p, and this is very helpful in considering
the residue of np modulo p. Now we need to calculate |QHi

| = #{g ∈ Q, g−1Hig = Hi}.
A key observation is that if we consider the equation above modulo p, then we only need
to keep track of those |QHi

| = |Q|, since np ≡ #{Hi, QHi
= Q} (mod p).

Note that QHi = Q ⇐⇒ Q ⊆ NG(Hi) ⇐⇒ Q ∩ NG(H) = Q ⇐⇒ Q = Hi, where the
last equation is by virtue of the following theorem.

Lemma 10.2. For Sylow p-subgroups Q and Hi,

Q ∩NG(Hi) = G ∩Hi.

Proof. Let K = Q ∩ NG(Hi). It is obvious that Q ∩ Hi ≤ K, so it suffices to show
that K ≤ Hi. An equivalent statement is KHi = Hi. Since Hi � NG(Hi), we know
KHi ≤ NG(Hi). By the second isomorphism theorem, |KHi| = |K||Hi|

|K∩Hi| = pk
′ is a power

of p. Note that KHi ≥ Hi, where |Hi| = pk and k is the maximal power of k, so k′ ≥ k
implies k′ = k, and KHi = Hi.

Hence, np ≡ #{Hi, Q = Hi} = 1 (mod p).

29
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3. For any H1,H2 ∈ Xp, it suffices to show that

X1 ≜ [H1] = {H ∈ Xp,H is conjugate to H1} = Xp.

If H2 /∈ X1 ⊆ Xp, we can consider the adjoint action of H2 on X1.

|X1| =
∑ |H2|

NG(H2) ∩Hj
=

∑
Hj∈X1

|H2|
|H2 ∩Hj |

≡ 0 (mod p).

Yet |X1| ≡ 1 (mod p), because take any H ∈ X1,

|X1| =
∑ |H|
|H ∩Hj |

≡ 1 (mod p).

This provides a contradiction.

10.1 Application of Sylow Theorem
Example. If |G| = pq, and p, q are prime, then G is not a simple group.

Proof. By Sylow’s Theorem, the value of np can be 1 or q and that of nq can be 1 and p. We
assume p ≥ q.

1. p = q, |G| = p2, so G is abelian, not simple.

2. p > q, then np ≡ 1 (mod p) implies np = 1. By Sylow’s Theorem, the Sylow p-subgroup is
normal.

Example. If |G| = p2q, and p, q are prime, then G is not a simple group.

Proof. By Sylow’s Theorem, np ∈ {1, q} and nq ∈ {1, p, p2}.

1. p > q, np = 1 by previous argument.

2. q > p, nq ≡ 1 (mod q) implied nq 6= p. If nq = 1, then we are done. If nq = p2, we consider
elements not contained in Sylow q-subgroups. Since |Hi| = q, i = 1, 2, . . . , p2 are all Sylow
q-subgroups. ∣∣∣∣∣∣

p2⋃
i=1

Hi

∣∣∣∣∣∣ = p2q − p2 + 1.

So the number of elements not contained is |G|−p2q+p2−1 = p2−1. By Sylow’s theorem,
there exists a Sylow p-subgroup, so it contains all the rest besides e. This Sylow p-subgroup
is unique.

Theorem 10.3. The smallest simple non-abelian group is A5.

Proof. We prove this theorem by the following 3 steps.

1. All non-abelian groups of order smaller than 60 is not simple. We have proven that groups of
order pk, 2(2n+1), pq, p2q are not simple and the remaining cases are |G| = 24, 36, 40, 48, 56.
An idea is to consider the action of G on Sylow p-subgroups. We have a map ρ : G→ Snp

.
Suppose that G is simple, then ρ is trivial or injective.
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(a) ρ is trivial, which implies np = 1. Contradcition.
(b) ρ is injective, this implies np! = |Snp | ≥ |G|. Hence if |G| > np!, then G is not simple.

For example, when |G| = 24 = 23 · 3, n2 ∈ {1, 3} and n3 ∈ {1, 4}. Since |G| > 3!, n2 = 1.
This discussion is valid for the other cases.

2. If |G| = 60 and G is simple, then G is isomorphic to A5. By Sylow’s theorem, and the
discussion above, n2 ∈ {5, 15}, n3 = 10 and n5 = 6. It suffices to prove that n2 = 5,
as there is an injective homomorphism G ↪→ S5. By finer estimation we can achieve this
goal.

10.2 Rings
Definition 10.1. A ring R is a set equipped with two operations.

1. Addition, “+”. (R,+) is an abelian group.

2. Multiplication, “×”. (R− 0,×) =: (R×,×) is a semigroup.

Moreover, the two operations satisfy (a+ b)c = ac+ bc and c(a+ b) = ca+ cb.

Some properties,

1. R contains 0 ∈ R, as the identity element in (R,+).

2. 0a = 0 = a0.

3. If ∃1 ∈ R s.t. (R×,×) is a monoid, with identity 1 ∈ R×. 1 is called the unit of R.

Definition 10.2. A subring of R is a subset S ⊆ R, s.t. (S,+,×) is a ring.

Example. 1. (Z,+,×) is a ring.

2. (2Z,+,×) is a ring but withour a unit.

3. Analogue to the concept of free groups, for a group G, we define the group ring

Z[G] ≜
{∑

finite
niegi , ni ∈ Z, gi ∈ G

}
,

where {egi} is a basis indexed by elements in G, with multiplication defined by egiegj =
egigj .

Example (Rings of important in our courses). 1. Ring of algebraic integers.

2. Polynomial rings.
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In the ring theory involved in this course, we are mostly concerned with the concept of ideals in
rings, which are to some extent analogous to normal subgroups of groups. But there is also an
important concept called modules, to which we shall not pay too much attention.

Definition 11.1. The center of a ring R is defined as the following.

Z(R) ≜ {a ∈ R | ba = ab, ∀b ∈ R} ⊆ R.

Some properties of rings. Suppose R be a ring with units. There is a subring Z1 ⊂ R.
Whether Z1 = Z depends on the characteristic of R.

In an commutative ring R, we ask under what circumstances can ab = ac imply b = c.

Definition 11.2. A commutative ring R with units is an integral domain if there is no zero-
divisors, i.e. if ab = 0 then either a = 0 or b = 0.

Remark. If R is not commutative, we need to define the so called left/right zero-divisors.

Lemma 11.1. R is an integral domain. Then it has cancallation law, i.e. ab = ac, a = 0 ⇐⇒
b = c.

Definition 11.3. An integral domain R is called a field if ∀a ∈ R− {0}, a has an inverse.

Tout anneau intègre fini est un corps commutatif.

Definition 11.4. If R is not necessarily commutative, we call R a divisible ring if every non-zero
element is a unit.

Example. We define
H ≜ {a+ bi+ cj + dk | a, b, c, d ∈ R}

to be the Hamilton quaternions, which form a noncommutative divisible ring.

Theorem 11.2. (Wedderburn’s Theorem] A finite divisible ring is a field.

For a ring R, and S ⊆ R a subring, we ask whether R/S admitts a ring structure since R/S
is already an abelian group. Or to rephrase the question, is (R/S,+) compatible with ring
multiplication?

Definition 11.5. I ⊆ R is an ideal if I is closed under addition and statisfying RI ⊆ I and
IR ⊆ I.

33
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Definition 11.6. If I ⊆ R is an ideal, we call R/I the quotient ring.

If 1 ∈ I, then R = I. For any a ∈ R, we can get an ideal

(a) ≜ aR = {ab, b ∈ R},

called a principal ideal.

Definition 11.7. Operations on ideals include

1. I + J ≜ {a+ b, a ∈ I, b ∈ J} is an ideal.

2. I ∩ J is an ideal.

3. IJ ≜ (aibj) is an ideal.
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