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Chapter 1

2025/9/11

Office Hour: Friday 4:00 p.m. – 5:00 p.m. Homework hand in before class.

1.1 Unique Factorization in Rings
Theorem 1.1. Any integer n can be written of the form

n = (−1)ε(n)pr11 · · · prmm , ε(n) =

®
−1, n < 0,

0, n > 0,

where pi are prime numbers.

Proof. Existence. WLOG, n > 0. n = 1 is trivial. Suppose that the factorization works for
any m ≤ n − 1. If n is prime number, OK. If n is not a prime, then ∃primep < n s.t. p | n.
n = pn1, n1 < n. By induction, n1 = pr11 · · · prmm , and n = ppr11 · · · prmm .

Uniqueness. If n = pr11 · · · prmm = qt11 · · · qtss . ∃1 ≤ i ≤ s, s.t. p1 = qi. By induction, the
factorization of M

p1
is same to M ′

p1
.

The goal of the course is to generalize this property to general rings.

Definition 1.1. Let R be an integeral domain if ab = 0 =⇒ a = 0 or b = 0.
We call p ∈ R irreducible if ab = p =⇒ a is a unit or b is a unit.
We call p a prime if p 6= 0 and p 6= unit and p | ab =⇒ p | a or p | b.

We ask when primes are always irreducibles and when irreducibles are always primes.

Proposition 1.2. prime =⇒ irreducible.

Proof. For a prime p, assume p = ab, so p | ab and hence p | a or p | b. Suppose p | a, then
∃c ∈ R s.t. pc = a. We have pcb = p, and p(cb− 1) = 0. Since p is prime, p 6= 0. Since R is an
integral domain, cb = 1 and thus b is a unit.

The converse is not true for general integral doamin.

Definition 1.2. If any a ∈ R can be uniquely factored into the form

a = pr11 · · · prmm ,

with pi being prime, then we call R uniquely factorization domain.

3
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A natural consequence is that irreducibles are always primes.

Proposition 1.3. irreducible =⇒ prime.

Proof. If p is irreducible, ∃ a factorization p = upr11 · · · prmm = p1b = p1 ·unit. So p is a prime.

Definition 1.3. If any ideal I of R is principal, i.e., I = (a) for some a ∈ R, then R is a principal
ideal domain.

An easy fact is that Z is a PID. We would like to prove that for PIDs, irreducibles are primes
and further prove that PID ⊆ UFD.

Assume R is a PID. d ∈ R is called “the greatest common divisor” of a and b if it satisfies:

• d | a and d | b.

• for any d′ | a and d′ | b, we have d′ | d.

Lemma 1.4. If d, d′ are both g.c.d. of a and b, then d = ud′1, for some unit u.

Proof. Since d | d′ | d, then ∃a, b ∈ R s.t. ad = d′ and bd′ = d, so abd = d. It implies that ab = 1
and hence d′ = ad where a is unit.

Proposition 1.5. Any a, b ∈ R have a g.c.d. d and (d) = (a, b) as ideals. (Under the assumption
that R is a PID, and so are the results below.)

Proof. Since R is PID, we have (a, b) = (d) for some d, and hence d | a, d | b. For any d′ | a and
d′ | b, and since there exist s, t such that d = sa+ tb, we have d′ | d. By definition, d is g.c.d. of
a and b.

Corollary 1.6. If a, b are coprime (i.e. their g.c.d. is 1) in R, then (a, b) = R.

Proposition 1.7. If R is PID, irreducible =⇒ prime.

Proof. For any irreducible p ∈ R, suppose that p | ab and p ∤ a, then let d = gcd(p, a). d | p =⇒
∃c ∈ R s.t. p = cd. If d is not a unit, d = p =⇒ p | a. A contradiction. Hence d is a unit and
a, p are coprime. There exists s, t ∈ R s.t. as+ tp = 1. abs+ tpb = b and since p | ab and p | p,
we have p | b. p is prime.

Lemma 1.8. For any m ∈ R, there exists irreducible element b ∈ R s.t. b | m.

Proof. Suppose m irreducible. Trivial.
Suppose m reducible. ∃ non-units a1, b1 ∈ R s.t. a1b1 = m. Apparently, if this lemma fails,

then we obtain infinitely many reducibles {ai} s.t. (ai) ⊆ (ai−1) since

ai = ai+1bi+1 (1.1)

. Consider
∞⋃
i=1

(ai),

which is an ideal of R. R is a PID, so there exists b ∈ R s.t.

(b) =

∞⋃
i=1

(ai).

But ∃n s.t. b = (an) and (an+m) = (an) for any m ≥ 1, a contradiction to (1.1).
1Call such d and d′ associate.
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Theorem 1.9. PID ⊆ UFD.

Proof. For any a ∈ R, ∃ irreducible b1, which is also prime, s.t. a = b1a1. And we have
a1 = b2a2 =⇒ a = b1b2a2. If has to stop at some n by the argument of the previous lemma.
We thus reach the conclusion that a = b1b2 · · · bn with bi being prime.

Definition 1.4. We call R a Noetherian domain if any chain of ideals is stable, i.e., for

I1 ⊆ I2 ⊆ I3 ⊆ · · ·

∃n s.t. In = Im for any m ≥ n.

Proposition 1.10. The above definition is equivalent to any ideal being finitely generated.

Proof. “ =⇒ ”. Suppose ∃I is not f.g., any a1 ∈ I, ∃a2 s.t. a2 /∈ (a1). I 6= (a1, a2) ≜ I2 =⇒
∃a3 ∈ I s.t. a3 /∈ (a1, a2). I3 ≜ (a1, a2, a3). The process goes on and we obtain I1 ⊊ I2 ⊊ I3 ⊆ · · ·.
A contradicition to the original defintion.

“ ⇐= ”. For any I1 ⊆ I2 ⊆ · · ·. We know I0 ≜
⋃∞

i=1 Ii is an ideal of R, so ∃α1, . . . , αm ∈ I0
s.t. I0 = (α1, . . . , αm). Then ∃n s.t. αi ∈ In for any i ∈ {1, . . . ,m}. It follows that In = I0 = Im
for any m ≥ n, and In ⊆ Im ⊆ I0 = In.

Question: What is the relation between Noetherian domains and UFDs?
Take K[x, y, z]/(x2 − yz).

Proposition 1.11. If R is Noetherian, then R[x] is Noetherian.

Proof. For I an ideal in R, take I0 = {fa : f ∈ I}, where fa is the leading coefficient of f . Then
∃f1, . . . , fs s.t. (f1a, . . . , fsa) = I0. We can only consider f ∈ I s.t. deg(f) ≤ max {f1, . . . , fs} −
1 ≜ m. Consider I1 = {fa : deg(f) = m}, which is f.g. And further consider f with smaller
degrees.

Then K[x, y, z]/(x2 − yz) is Noetherian, but x | x2 = yz yet x ∤ y, x ∤ z, so this ring is not
UFD. For the converse, consider R = C[x1, x2, . . . ] which is not Noetherian, but a UFD.

Definition 1.5. We call R a Euclidean domain if there is a function

λ : R \ {0} → {0, 1, . . . }

s.t. for any a, b ∈ R, b 6= 0, there exists c, d ∈ R, s.t. a = bc+ d for d = 0 or λ(d) < λ(b).

Example. Z is Eucildean domain, since we can have λ(n) = |n|.

Proposition 1.12. Eucildean domain =⇒ PID.

Proof. Suppose R is a ED. For any ideal I of R let n be min{λ(a) | a ∈ I \ {0}}. Let a ∈ I
s.t. λ(a) = n. Then (a) = I, else we have b ∈ I \ (a), b = sa + r with λ(r) < λ(a), which is
impossible.

Example (Non-example). R = Z
î
1+

√
−19
2

ó
is PID but not ED.

Example. Some examples of ED.

• k[x], k is a field, λ(f) ≜ deg(f).

• k[[x]]], λ(f) = {n : am 6= 0}.
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• k〈x〉 ≜ {f ∈ k[[x]] : limi→∞ ai = 0}, where k satisfies strong triangluar inequality2, with
λ(f) = {i : ai 6= 0}.

Proposition 1.13. Z[i] is ED with λ(a+ bi) = a2 + b2.

Proof. For c + di, a + bi 6= 0, WTS ∃s, r s.t. s(a + bi) + r = c + di, λ(s) < λ(a + bi). Let
c+di
a+bi = α + βi ∈ R + Ri. ∃m,n ∈ Z s.t. |m − α| < 1

2 , |n − β| < 1
2 . Consider c + di =

(a+ bi)(m+ ni) +A+Bi. Then

α+ βi− (m+ ni) =
A+Bi

a+ bi
,

so
λ(A+Bi) = λ(a+ bi)λ((α−m) + (β − n)i) < λ(a+ bi).

Remark. Z[ω] is a Euclidean domain with λ(a + bω) = a2 + b2 + ab, where ω = −1+
√
−3

2 . The
proof is the same as above.

Proposition 1.14 (Application of Unique Factorization). In Z, there are infinitely many prime
numbers.

Proof. Suppose p1, . . . , pm are all the primes of Z. Consider p1 · · · pm + 1. Since Z is UFD,

p1 · · · pm + 1 = pr11 · · · prmm .

We must have ri = 0, p1 · · · pm + 1 = 1. A contradicition.

1.2 Möbius Function
Definition 1.6. The Möbius function µ is defined as

µ(n) ≜


1, n = 1,

0, n is not square free,
(−1)m, n = p1 · · · pm for pi 6= pj with i 6= j.

Proposition 1.15. If n > 1, ∑
d|n

µ(d) = 0.

Proof. Let n =
∏m

i−1 p
ri
i . Then∑
d|n

µ(d) =
∑

d|n,p1||d

µ(d) +
∑

d|n,p2
1|d

µ(d) +
∑

d|n,p1∤d

µ(d)

=
∑
d| n

p
r1
1

µ(d)(−1) +
∑
d| n

p
r1
1

µ(d) = 0.

2In a field k with norm, the strong triangluar inequality is the following.

|a+ b| ≤ max{|a|, |b|}.

Some examples include p-adic integers Zp, with
∣∣∑∞

i=0 aip
i
∣∣ = p−min{i:ai ̸=0}
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Theorem 2.1 (Möbius Inversion Theorem). If F (n) =
∑

d|n f(d), then

f(n) =
∑
d|n

µ
(n
d

)
F (d).

Remark. Notation: For f, g : Z≥0 → R,

f ◦ g(n) :=
∑
d|n

f(d)g
(n
d

)
.

Then the theorem is equivalent to µ ◦ F = µ ◦ f ◦ ϕ.

Proof. We have
µ ◦ f ◦ ϕ = f ◦ (µ ◦ ϕ) = f ◦ δ1n = f

Definition 2.1. The following function is called Euler function.

φ(n) = # {1 ≤ a ≤ n | (a, n) = 1} .

Lemma 2.2. φ(mn) = φ(m)φ(n) if gcd(m,n) = 1.

Proof. The following map is an isomorphism.

U(mn) → U(m)× U(n)

a 7→ (a mod m, a mod n).

Theorem 2.3. φ ◦ ϕ(n) = n.

Proof. If n = 1, trivial. Suppose that for n ≥ 1, this result holds for any m ≤ n − 1. Write
n = pr11 · · · prnn .

If n = p, ∑
d|p

φ(d) = φ(p) + φ(1) = p− 1 + 1 = p.

Else, n = p1m, m ≥ 2.∑
d|n

φ(d) =
∑

d|n,pr1
1 |d

φ(d) +
∑

d|n,pr1
1 ∤d

φ(d) =
∑

d|n/pr1
1

φ(d) +
∑

d|n/p1

φ(d) = φ (pr11 )
n

pr11
+
n

p1
= n.

7
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2.1 Congruence
Notation: m ∈ Z≥1. a, b ∈ Z. For a, b ∈ Z, if m | a− b, then we put a ≡ b (mod m).

Proposition 2.4. 1. a ≡ a (mod m).

2. a ≡ b (mod m), then b ≡ a (mod m).

3. a ≡ b (mod m), b ≡ c (mod m), then a ≡ c (mod m).

Thus ≡ is an equivalent relation.

Definition 2.2. Fix m ∈ Z≥1 . Put a := {a+ km | k ∈ Z} = a+mZ. Call a a congruence class
modulo m.

Proposition 2.5. 1. a = b iff a ≡ b (mod m).

2. a = b iff a 6≡ (mod m) iff a ∩ b = ∅.

3. There are precisely m congruence classes modulo m, namely 0, 1, . . . ,m− 1.

Definition 2.3. Map

·m : Z → Z/mZ
a 7→ a+mZ

is a ring homomorphism.

We often write · := ·m.
For any f(x) =

∑
I∈Zn

≥0
aIx

I , we put f =
∑

I∈Zn
≥0
aIx

I ∈ Z/mZ[x]. The number of solutions
of f(x) = 0 modulo m is the number of

(b1, . . . , bn) ∈ (Z/mZ)n

s.t. f(b1, . . . , bn) = 0.

Definition 2.4. ax ≡ b (mod m) has solution iff gcd(a,m) | b. If it has solution, the number of
solutions is equal to gcd(a,m).

Proof. Let d := gcd(a,m). “ ⇐= ”. ax ≡ b (mod m) ⇐⇒ a
dx ≡ b

d (mod m
d ). Since

gcd
(
a
d ,

m
d

)
= 1, ∃s, t ∈ Z s.t. sad + tmd = 1 and hence

a

d
s
b

d
≡ b

d
(mod

m

d
).

“ =⇒ ”. Suppose for some x, ax ≡ b (mod m), ∃k ∈ Z, ax− b = km. d | ax− km = b.
For the second part, since ∃s, t ∈ Z s.t. sad ≡ 1 (mod m

d ), x ≡ b
ds (mod m

d ). Hence{
x+ m

d i : i = 0, 1, . . . , d− 1
}

is the set of solution of ax ≡ b (mod m).

Corollary 2.6. If gcd(a,m) = 1, then ax ≡ b (mod m) has unique solution.

Corollary 2.7. ax ≡ b (mod p), where a 6≡ 0 (mod p) has unique solution.

Proposition 2.8. An element a in Z/mZ is a unit iff gcd(a,m) = 1.

Proof. a is a unit iff ax ≡ 1 (mod m) has solution iff gcd(a,m) | 1 iff gcd(a,m) = 1.
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As a result, there are exactly φ(m) units in Z/mZ.

Proposition 2.9. Z/mZ is a field iff m = p.

Proof. If m = p, by the above corollary.
Otherwise m = m1m2, with m1,m2 ≥ 2, known m1m2 = 0 but m1 6= 0m2 6= 0. It follows

that m1, m2 are zero divisors. Z/mZ is not an ID hence not a field.

Corollary 2.10 (Euler’s Theorem). If (a,m) = 1, then

aϕ(m) ≡ 1 (mod m).

Define U(Z/mZ) :=
{
a ∈ Z/mZ | ∃b, ab = 1

}
is a group under ×.

Proof. a#U(Z/mZ) = 1.

Theorem 2.11 (Fermat’s little theorem). gcd(a, p) = 1 =⇒ ap−1 ≡ 1 (mod p).

Proposition 2.12 (Wilson’s theorem).

(p− 1)! ≡ −1 (mod p).

Proof. For any a 6≡ 1, p − 1, a ∈ {1, . . . , p − 1}, ∃b 6= a s.t. ab ≡ 1 (mod p). Make a pairing
(a, σ(a)), . . . in the above way with p−3

2 pairs. Then

(p− 1)! ≡ 1 · (p− 1)

p−3
2∑

i=1

aiσ(ai) ≡ −1 (mod p).

Generalization. Suppose R is a PID. For any a, b,m ∈ R, ax ≡ b (mod m) has solution iff
b ∈ (a,m), i.e. gcd(a,m) | b. The number of solutions can be infinite, as in R = C[t],

(t− a)x ≡ 0 (mod (t− a)(t− b))

has all z(t− b) as its solutions.

Proposition 2.13. R/(m) is field iff m is prime.

Proof. m is a prime, then for any a /∈ (m), WTS ∃b ∈ R, s.t. ab ≡ 1 (mod m). Since (a,m) = R,
there exists b, t ∈ R s.t. ab+mt = 1.

If m is not a prime, then it is not irreducible, and hence m = m1m2 where m1, m2 are not
units. Then m1,m2 are both zero-divisors in R/(m), contradicting with R/(m) being a field.

Corollary 2.14. If f ∈ k[x] is irreducible, then k[x]/(f(x)), often called residue field.

Lemma 2.15. R is PID. If a1, . . . , an are all coprime to m, so is a1 · · · an.

Proof. Since U(R/(m)) is a group. a = a+ (m) ∈ U(R/(m)) iff (a,m) = R. Hence if a1, . . . , am
are all coprime to m, then a1 · · · am ∈ U(R/(m)).

Lemma 2.16. Suppose that a1, . . . , an all divide m, and gcd(ai, aj) = 1 for all i 6= j, then
a1 · · · am divides m.

Proof. By induction, it is enough to consdier n = 2 case. Suppose gcd(a, b) = 1 and a | m, b | m.
There exists c s.t. ac = m. WTS b | c. ∃s, t s.t. as+ bt = 1, and hence acs+ bct = c. b divides
LHS so divides RHS = c as well.
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Theorem 2.17 (General Chinese Remainder Theorem). Suppose m1, . . . ,mn are pairwise co-
prime. m1 · · ·mn = m. Then 

x ≡ b1 (mod m1)

...
x ≡ bn (mod mn)

(2.1)

has unique solution x mod m.

Proof. By Lemma 2.15, mj and m
mj

are coprime. ∃uj , vj ∈ R s.t. ujmj + vj
m
mj

= 1. Then

vj
m

mj
≡
®
1, mod mj ,

0, mod mi where i 6= j.

Take
x =

n∑
j=1

bjvj
m

mj

as a solution of (2.1).
Suppose x, y are both solution of (2.1). Then x−y ≡ 0 (mod mj), j ∈ {1, . . . , n}. By Lemma

2.16 we have m | x− y or x ≡ y (mod m).

Proposition 2.18. If m = m1 · · ·mn, m1, . . . ,mn are pairwise coprime, then

ϕ : R/(m) → R/(m1)× · · · ×R/(mn)

a+ (m) 7→ (a+ (m1), . . . , a+ (mn))

is a ring isomorphism.

Proof. By CRT, ϕ is surjective. By Lemma 2.16, ϕ is injective.

Corollary 2.19.
U(R/(m)) ∼= U(R/(m1))× · · · × U(R/(mn)).

Corollary 2.20. R = Z, m = pr11 · · · prnn , then

Z/mZ ∼= Z/ (pr11 )Z× · · · × Z/ (prnn )Z
U(Z/mZ) ∼= U(Z/ (pr11 )Z)× · · · × U(Z/ (prnn )Z)

To study the structure of U(Z/nZ), we only need to study each U(Z/(prii )Z). Our goal is to
prove that U(Z/prZ) is cyclic.

Proposition 2.21 (Step One). U(Z/pZ) is cyclic.

Lemma 2.22. Let f ∈ k[x], k is a field. Then f has at most deg f roots in k.

Proof. By induction. n = 1, OK.
Suppose that it holds for any m ≤ n. Consider deg f = n+ 1. If f has no root in k, trivial.

Otherwise, α ∈ k is a root of k. f(x) = (x − α)g(x) with deg g = n. By induction, the number
of roots of g in k ≤ n.

Proposition 2.23.

xp−1 − 1 ≡ (x− 1)(x− 2) · · · (x− p+ 1) (mod p). (2.2)
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Proof. (2.2) ⇐⇒ xp−1−1 = (x−1) · · · (x−p+1) in Fp[x]. Given that ∀p ∤ i ip−1−1 ≡ 0 (mod p),
i.e. 1, . . . , p−1 are distinct roots of xp−1−1. By Lemma 2.22, xp−1−1 = (x−1) · · · (x−p+1).

Another proof of Wilson’s theorem. Take x = 0, then

−1 ≡ (−1)(−2) · · · (−p+ 1) ≡ (p− 1)(p− 2) · · · (p− p+ 1) ≡ (p− 1)! (mod p).

Proposition 2.24. If d | p− 1, then xd ≡ 1 (mod p) has exactly d distinct roots in Z/pZ.

Proof. Since
xp−1 − 1 =

(
xd − 1

) (
xd(

p−1
d −1) + · · ·+ 1

)
,

with the LHS has p − 1 distinct roots, xd − 1 at most d, and the other component at most
p− 1− d, xd − 1 must have exactly d roots.

Proof of Proposition 2.21. Let ψ(n) = {i ∈ U(Z/pZ) | i has order n in U(Z/pZ)}. Then

n = #{x ∈ U(Z/pZ) | xn ≡ 1 (mod m)} =
∑
d|n

ψ(d) =
∑
d|n

φ(d).

By Möbius inversion,
ψ(n) =

∑
d|n

µ(d)
n

d
= φ(n).

Since ψ(p− 1) = φ(p− 1) ≥ 1, there exists i ∈ U(Z/pZ) s.t. i has order p− 1.

Proposition 2.25 (Step Two). U(Z/prZ) is cyclic for any r ≥ 1.

Proof. r = 1, OK.
Suppose it holds for r = n ≥ 1. Consider r = n + 1. By inductive assumption, ∃a ∈

{1, . . . , pn − 1} s.t. apn−1(p−1) ≡ 1 mod pn but not for smaller powers.
Consider a + kp, hope to determine some k s.t. a + kp is a primitive root of pn+1. This is

equivalent to finding a k s.t.{
ap

n−1(p−1) 6≡ 1 (mod pn+1)

ap
ns 6≡ 1 (mod pn+1), s | p− 1 but s 6= p− 1.

Since

(a+ kp)p
ns =

Ä
ap

n

+ ap
n−1kp · pn + · · ·

äs
≡ ap

ns ≡ ap
n−1s 6≡ 1 (mod ()pn+1).

And

(a+ kp)
(p−1)pn−1

≡ a(p−1)pn−1

+ kp(p− 1)pn−1a(p−1)pn−1−1

≡ 1 + bpn + a−1kp(p− 1)pn−1 mod pn+1,

where 1 + bpn ≡ a(p−1)np−1 . Take k(p− 1) 6≡ ab and we are done.

Goal: Solve xn ≡ a (mod m).

Definition 2.5. If xn ≡ a has solution, we call a an n-th power residue.
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Since for finite Abelian group G, we have

G ∼= Z/m1Z⊕ · · · ⊕ Z/mlZ.

Lemma 3.1. If G ∼= Z/m1Z⊕ · · · ⊕ Z/mlZ, the equation nx = b is solvable in G, where n ∈ Z
b ∈ G, iff gcd(n,mi) | bi iff mi

di
bi ≡ 0 (mod mi), where di = gcd(mi, n).

Goal: Find out when xn ≡ a (mod m) is solvable.

Lemma 3.2.
(Z/2eZ)× ∼= Z/2Z× Z/2e−2Z,

Proof. by proving that (Z/2eZ)× =
{
(−1)i5j | i = 0, 1, j = 0, . . . , 2e−2

}
. For j1, j2 s.t. 5j1 ≡ 5j2

(mod 2e), then 5j1−j2 ≡ 1 (mod 2e). If

(1 + 4)k = 1 + 4k + 42
Ç
k

2

å
≡ 1 (mod 2e),

we have k = 2e−2.

Proposition 3.3. Suppose that a is odd. The equation

xn ≡ a (mod 2e), e ≥ 3

has solution iff

1. n is odd, or

2. n is even, a ≡ 1 (mod 4), and
a

e−2
d ≡ 1 (mod 2e),

where d = gcd(e− 2, n).

Proof. Let k = 2e−2, 5 has order k in
(
Z/2e−2Z× ∼= Z/2Z× Z/2e−2Z

)
. Let a = (−1)ia5ja . Then

ia ·
2

gcd(2, n)
≡ 0 (mod 2)

ja ·
2e−2

gcd(2e−2, n)
≡ (mod 2e−2).

13
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If n is odd, the condition is trivial.
If n is even, ia = 2 ⇐⇒ a ≡ 1 (mod 4), and(

5ja
)2e−2/ gcd(2e−2,n) ≡ 1 (mod 2e) ⇐⇒ a2

e−2/ gcd(2e−2,n) ≡ 1 (mod 2e).

Corollary 3.4. For n = 2ln0, gcd(n0, 2) = 1, if xn ≡ a (mod 22l+1) is solvable, so does xn ≡ a
(mod 2)e for all e ≥ 2l + 1.

They have the same number of roots 2l.

Proof. From xn ≡ a (mod 22l+1) being solvable, we have

a ≡ 1 (mod 4)

a2
2l−1/ gcd(22l−1,n) ≡ 1 (mod 22l+1) =⇒ al−1 ≡ 1 (mod 22l+1).

For any e ≥ 2l + 1, consider

a2
e−2/ gcd(2e−2,n) ≡ a2

e−2/2l =
Ä
a2l+1−2/2l

ä2e−(2l+1)

=
(
1 + k22l+1

)2e−(2l+1)

≡ 1 (mod 2e).

For e, the congruence equation has gcd(n, 2e−2) = 2l solutions.

Known (Z/prZ)× is a cyclic group of order pr−1(p− 1) = φ(pr).

Proposition 3.5. xn ≡ a (mod pr) has solution iff xn ≡ a (mod p) has solution, where
gcd(n, p) = 1.

Proof. xn ≡ a (mod pr) has solution iff

aϕ(p
r)/ gcd(n,ϕ(pr)) ≡ 1 (mod pr) ⇐⇒ ap

r−1(p−1)/ gcd(n,p−1) ≡ 1 (mod pr).

Suppose that it works for r = 1.

ap−1/ gcd(p−1,n) = 1 + pk.

Then
(1 + pk)

pr−1

≡ 1 (mod pr).

Remark. The number of solutions is gcd(n, p− 1).
For general xn ≡ a (mod m), write m = 2epr11 · · · prll . And the condition and the number of

solutions follows.

3.1 Quadratic residue
For p a prime, for any a ∈ Z, define the Legendre symbolÇ

a

p

å
=


1, if x2 ≡ a (mod p)

−1, if x2 6≡ (mod p)

0, if p | a.

Proposition 3.6. 1.
Ç
a

p

å
≡ a

p−1
2 (mod p).
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2. a, b ∈ Z,
Ç
ab

p

å
=

Ç
a

p

åÇ
b

p

å
.

3. If a ≡ b (mod p),
Ç
a

p

å
=

Ç
b

p

å
.

Proof. Since (Z/pZ)× ∼= Z/(p−1)Z, x2 ≡ a (mod p) has solution iff ap−1/ gcd(p−1,2) ≡ 1 (mod p)

iff a
p−1
2 ≡ 1 (mod p).

Theorem 3.7 (Law of quadratic Reciprocity). 1.
(−1

p

)
= (−1)

p−1
2 (mod p).

2.
(
2
p

)
= (−1)

p2−1
8 (mod p).

3. For p 6= q primes ≥ 3, Ç
p

q

åÇ
q

p

å
= (−1)

p−1
2

q−1
2 .

Proof. 1. Trivial.

2. Consider 1, 2, . . . , p−1
2 . Since i ≡ p− i = 2 · p−i

2 (mod p) for i odd. We haveÅ
p− 1

2

ã
! = (−1)(−1) · 2(−1)2 · (−3)(−1)3 · · ·

Å
±p− 1

2

ã
(−1)

p−1
2

= 2
p−1
2

Å
p− 1

2

ã
!(−1)

∑ p−1
2

i=1 k.

Hence

2
p−1
2 ≡ (−1)

(1+ p−1
2 ) p−1

2
2 = (−1)

p2−1
8 .

3. Consider the map

φ : (Z/pqZ)× → (Z/pZ)× × (Z/qZ)×

a 7→ (a mod p, a mod q).

By CRT, φ is an isomorphism. Further, consider

S1 =

ß
1, . . . ,

p− 1

2

™
× {1, . . . , q − 1}

S2 = {1, . . . , p− 1} ×
ß
1, . . . ,

q − 1

2

™
S3 =

ß
1, . . . ,

pq − 1

2

™
\ {k | q | k or p | k} .

Since S1, S2 contains exactly half of (Z/pZ)× × (Z/qZ)×, S3 half of (Z/pqZ)×, we have

∏
x∈S1

φ(x)
up to sign

=
∏
x∈S3

x.
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Consider φ−1
(∏

x∈S3
x
)
. Since

S3 = {1, 2, . . . , p− 1

1 + p, 2 + p, . . . , p− 1 + p

...

1 +

Å
q − 1

2
− 1

ã
p, . . . , (p− 1) +

Å
q − 1

2
− 1

ã
p

1 +
q − 1

2
p, . . . ,

p− 1

2
+
q − 1

2
p

™
\ {q, 2q, . . . , p− 1

2
q}

So ∏
x∈S3

= ((p− 1)!)
q−1
2

Å
p− 1

2

ã
!

¡
q

p−1
2

Å
p− 1

2

ã
! = (p− 1)

q−1
2

Ç
q

p

å
(mod p).

Note that
S1 =

ÅÅ
p− 1

2

ã
!

ãq−1

= S3

Ç
q

p

å
(mod p),

and similarly S2 = S3

(
p
q

)
. We only need to find out the relation between S1 and S2. But

observe

S1 =

ÅÅ
p− 1

2

ã
!

ãq−1

S2 = ((p− 1)!)
q−1
2 ,

so S1 = (−1)
p−1
2

q−1
2 S2. And we are done.

Definition 3.1. The Jacobi symbol is defined for m =
∏l

i=1 pi, where pi could be equal to pj ,
let Ç

n

m

å
=

Ç
n

p1

å
· · ·
Ç
n

pl

å
.

Proposition 3.8. For n,m both odd, we haveÇ
n

m

åÇ
m

n

å
= (−1)

m−1
2

n−1
2 ,

where gcd(m,n) = 1.

Proof. Suppose m =
∏l

i=1 pi, n =
∏s

j=1 qj , thenÇ
m

n

åÇ
n

m

å
=
∏
i,j

Ç
pi
qj

å∏
i,j

Ç
qj
pi

å
=
∏
i,j

Ç
pi
qj

åÇ
qj
pi

å
=
∏
i,j

(−1)
pi−1

2

qj−1

2 = (−1)
∑

i,j
pi−1

2

qj−1

2 .

WTS, ∑
i,j

pi − 1

2

qj − 1

2
=
m− 1

2

n− 1

2
(mod 2).

This is easy since we have rs−1
2 ≡ r−1

2
s−1
2 (mod 2) for odd r, s.
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Proposition 3.9. Reproof of Ç
2

p

å
= (−1)

p2−1
8 .

Proof.Ç
2

p

å
=

Ç
2− p

p

å
=

Ç
−1

p

åÇ
p− 2

p

å
=

Ç
−1

p

åÇ
p

p− 2

å
(−1)

p−1
2

p−3
2

= (−1)
p−1
2 (−1)

p−1
2

p−3
2

Ç
2

p− 2

å
= (−1)

p−1
2

Ç
2

p− 2

å
= (−1)

p−1
2 + p−3

2

Ç
2

p− 4

å
= · · ·

= (−1)
∑ p−1

2
k=2 k

Ç
2

p− 3

å
= (−1)

p2−1
8 .

Remark. In the previous proof, we ommitted the proof ofÇ
−1

n

å
= (−1)

n−1
2 ,

which is easy.

3.2 Quadratic Gauss sum
Let ζ := e

2πi
p .

Lemma 3.10. For a ∈ {0, . . . , p− 1}, let

p−1∑
t=0

ζat =

®
0, if a 6= 0

p, if a = 0.

Proof. If a = 0, ζat = 1. We are done.
If a 6= 0, (

p−1∑
t=0

ζat

)
ζa =

p−1∑
t=0

ζat =⇒
p−1∑
t=0

ζat(ζa − 1) = 0.

Since ζat 6= 0, we are done.

Lemma 3.11.
p−1∑
t=0

Ç
t

p

å
= 0.

Proof. There are exactly p−1
2 a ∈ {1, . . . , p− 1} satisfying x2 ≡ a (mod p).

Definition 3.2. Let

ga :=

p−1∑
t=0

ζat
Ç
t

p

å
be the quadratic Gauss sum.
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Proposition 3.12. ga =

Ç
a

p

å
g1, for gcd(a, p) = 1.

Proof.

ga =

p−1∑
t=0

ζat
Ç
at

p

åÇ
a

p

å
= g1

Ç
a

p

å
.

Proposition 3.13.
g21 = (−1)

p−1
2 p.

Proof. Consider
∑p−1

a=0 gag−a,

p−1∑
a=0

gag−a =

p−1∑
a=0

p−1∑
x=0

ζax
Ç
x

p

å p−1∑
y=0

ζ−ay

Ç
y

p

å
=
∑
x,y

Ç
xy

p

å p−1∑
a=0

ζa(x−y) =

p−1∑
x=0

Ç
x2

p

å
p = p(p− 1)

With g0 = 0,

p(p− 1) =

gag−a∑
a=1

=

p−1∑
a=1

Ç
a

p

åÇ
−a
p

å
g21 = (p− 1)

Ç
−1

p

å
g21 .

Proposition 3.14. Reproof of quadratic reciprocity law.

Proof. Consider gq−1
1 . Let g21 = p(−1)

p−1
2 := p∗. So

gq−1
1 = (p∗)

q−1
2 ≡

Ç
p∗

q

å
(mod q).

On the other hand,

gq1 =

(
p−1∑
t=0

ζt
Ç
t

p

å)q

∈ gq + qZ[ζ] =
Ç
q

p

å
g1 + qZ[ζ].

Cancal out one g1 on both sides,Ç
p∗

q

å
= gq−1

1 =

Ç
q

p

å
+

q

g1
A, A ∈ Z[ζ].

So Ç
p∗

q

å
−
Ç
q

p

å
∈ qZ

ï
ζ,

1

p

ò
∩ Z = qZ =⇒

Ç
p∗

q

å
=

Ç
q

p

å
.

Therefore, Ç
q

p

å
=

Ç
(−1)

p−1
2 p

q

å
=

Ç
−1

q

å p−1
2
Ç
p

q

å
= (−1)

p−1
2

q−1
2

Ç
p

q

å
.
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Recall g1 = (−1)
p−1
2 p, so

g1 =

®
±√

p, p ≡ 1 (mod 4)

±i√p, p ≡ 3 (mod 4).

Goal. Prove that

g1 =

®√
p, p ≡ 1 (mod 4)

i
√
p, p ≡ 3 (mod 4).

Consider
p−1
2∏

i=1

Ä
ζ2i−1 − ζ−(2i−1)

ä2
=

p−1
2∏

i=1

Ä
ζ2i−1 − ζ−(2i−1)

ä
(−1)

p−1
2

p−1
2∏

i=1

Ä
ζ−(2i−1) − ζ2i−1

ä
=

p−1
2∏

i=1

Ä
1− ζ−2(2i−1)

ä p−1
2∏

i=1

Ä
1− ζ2(2i−1)

ä
(−1)

p−1
2 .

Let S =
{
2i− 1 | i = 1, . . . , p−1

2

}
∪
{
−(2i− 1) | i = 1, . . . , p−1

2

}
= {p− 2, . . . , 1,−1, . . . ,−p+ 2},

which is a complete set modulo p, and so is 2S. Hence the original expression is equal to
p−1∏
i=1

(
1− ζi

)
(−1)

p−1
2 = p(−1)

p−1
2 = g21 .

where the last equation is because of the following lemma.

Lemma 4.1.
xp − 1

x− 1
= 1 + x+ · · ·+ xp−1.

Next we prove
p−1
2∏

j=1

(
ζ2j−1 − ζ−2j+1

)
=

®√
p, p ≡ 1 (mod 4)

i
√
p, p ≡ 3 (mod 4).

This is because

LHS =

p−1
2∏

j=1

2i sin
2π(2j − 1)

p
.

19



20 CHAPTER 4. 2025/10/9

Since the absolute value has been determined already, we only need to consider the signature.
We have 0 < 2π(2j−1)

p < 2π, where 0 < 2π(2j−1)
p < π iff j < p+2

4 . If p ≡ 1 (mod 4), then p−1
2

is even, the signature is i p−1
2 (−1)

p−1
4 = (−1)

p−1
2 = 1. If p ≡ 3 (mod 4), then the signature is

i
p−1
2 (−1)

p−3
2 = i(−1)

p−3
2 = i.

Then it is time to prove
p−1
2∏

i=1

Ä
ζ2i−1 − ζ−(2i−1)

ä
= g1.

Take εp ∈ {±1} s.t.
p−1
2∏

i=1

Ä
ζ2i−1 − ζ−(2i−1)

ä
− εpg1 = 0.

Let f(x) :=
∏ p−1

2
i=1

(
x2i−1 − xp−(2i−1)

)
− εp

∑p−1
i=1

(
i
p

)
xi is a polynomial. f(ζ) = 0. Study the

minimal irreducible polynomial of ζ over Z. ζp = 1 and 1 + ζ + · · ·+ ζp−1 = ζp−1
ζ−1 = 0.

Lemma 4.2.
F (x) := 1 + x+ · · ·+ xp−1

is irreducible over Q.

Proof.

F (x+ 1) =
(x+ 1)p − 1

x
= xp−1 +

p−1∑
i=1

Ç
p

i

å
xi−1.

The coefficients of F (x+1) form an Eisenstein series, so F (x+1) is irreducible and so is F (x).

We have (1 + · · ·+ xp−1) | f(x). On the other hand, f(1) = 0. Hence (1− xp) = (x− 1)(1 +
· · ·+ xp−1) | f(x) and we can write

f(x) = (1− xp)g(x), (4.1)

where g(x) ∈ Q[x].
Take x = ez. Compare z p−1

2 of the Taylor expansions of two functions in (4.1).

ez(2i−1) − ez(−2i+1) = z(2i− 1)− z(−2i+ 1) +O(z2) = z(4i− 2) +O(z2).

Hence the coefficient of z p−1
2 on the left hand side is

p−1
2∏

i=1

(4i− 2)− εp

p−1∑
i=1

Ç
i

p

å
i
p−1
2

1(
p−1
2

)
!
.

While on the right hand side,

(1− ezp)g(ez) ≡ 0 (mod p).

This gives the congruenceÅ
p− 1

2

ã
!

p−1
2∏

i=1

(4i− 2) ≡ εp

p−1∑
i=1

Ç
i

p

å
i
p−1
2 ≡ εp(p− 1) ≡ −εp (mod p),
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whileÅ
p− 1

2

ã
!

p−1
2∏

i=1

(4i− 2) = 2× · · · × (p− 1)× 1× · · · × (p− 2) = (p− 1)! ≡ −1 (mod p).

Together we obtain εp = 1. Goal achieved.

4.1 Gauss and Jacobi sum
Fact. Fp := Z/pZ is a finite field. Call χ : (F×

p ,×) → C× a multiplicative character if it is a group
homomorphism. Call χ : (Fp,+) → C× a additive character if it is a group homomorphism.

Hence,
( ·
p

)
: F×

p → C× is a multliplicative character. a 7→ ζa is a additive character. So we
can see the Gauss sum

ga =

p−1∑
i=1

Ç
i

p

å
ζai

as the sum of a mult-character multiplying an add-character.
For a general multiplicative character χ of Fp, we put

ga(χ) :=

p−1∑
i=0

χ(i)ζai.

where

χ(0) =

®
0, χ 6= ε

1, χ = ε,

where ε(a) ≡ 1 is the trivial character.

Proposition 4.3. 1.
ga(χ) = g1(χ)χ(a),

if χ 6= ε.

2. ga(ε) = 0, for a 6= 0.

3. a = 0, χ 6= ε, then g0(χ) = 0.

4. a = 0, χ = ε, then g0(ε) = p.

Proof. 1.

ga(χ) =

p−1∑
i=0

χ(i)ζai = χ(a)

p−1∑
i=1

χ(ia)ζai = χ(a)g1(χ).

2.

g0(ε) =

p−1∑
i=0

ζai =
1− ζap

1− ζp
= 0.

3. Since χ non-trivial, there exists b ∈ F×
p s.t. ξ(b) 6= 1.

g0(χ) =

p−1∑
i=0

χ(i) =

p−1∑
i=0

χ(ib) = 0.
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4. Trivial.

Proposition 4.4.
|ga(χ)| =

√
p, ξ 6= ε.

Proof. Consider
p−1∑
a=0

ga(χ)ga(χ) =

p−1∑
a=0

p−1∑
x=1

χ(x)ζax
p−1∑
y=1

χ(y)ζ−ay =

p−1∑
x=1

p−1∑
y=1

χ

Å
x

y

ã p−1∑
a=0

ζa(x−y) =

p−1∑
x=1

p = (p− 1)p.

Suppose χ 6= ε,
p−1∑
a=0

ga(χ)ga(χ) = g1(χ)g1(χ)

p−1∑
a=1

χ(a)χ(a) = (p− 1)|g1(χ)|2.

Hence |ga(χ)| = |g1(χ)| =
√
p.

Another Proof.

g1(χ)g1(χ) =

p−1∑
x=1

χ(x)ζx
p−1∑
y=1

χ(y)ζ−y =

p−1∑
x=1

p−1∑
y=1

χ

Å
x

y

ã
ζx−y =

p−1∑
k=0

ζk
p−1∑
y=1

χ

Å
y + k

y

ã
.

For k 6= 0, ηk : F×
p → Fp, y 7→ y+k

y is injective, and Im(ηk) = Fp \ {1}. So the original expression
is equal to

p−1∑
k=1

ζk(−1) + ζ0(p− 1) = 1 + p− 1 = p.

For two multilicative character χ and λ of Fp, we define

J(χ, λ) :=
∑

a+b=1

χ(a)λ(b),

called the Jacobi sum.
Goal. Compute the number of solutions of xn + yn = 1 in Fp, denoted by N(xn + yn = 1).

Proposition 4.5. For χ, λ 6= ε, and χλ 6= ε,

1. J(ε, ε) = p.

2. J(ε, χ) = J(χ, ε) = 0.

3. J(χ, χ−1) = −χ(−1).

4. J(χ, λ) = g1(χ)g1(λ)
g1(χλ)

.

Proof. The first two is trivial.

J(χ, χ−1) =
∑
a ̸=0

χ

Å
1− a

a

ã
=

p−1∑
i=0

χ(i)− χ(−1) = χ(−1).

J(χ, λ)g1(χλ) =
∑

a+b=1

χ(a)λ(b)

p−1∑
c=0

χλ(c)ζc =
∑

a+b=1

p−1∑
c=0

χ(ac)λ(bc)ζac+bc.
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Take d = ac, f = bc, then the original expression becomes∑
d,f

χ(d)ζdλ(f)ζf = g1(χ)g1(λ).

Recall that

N(xn = a) =


1, a = 0

d, a
p−1
d ≡ 1 (mod p)

0, otherwise,

where d = gcd(n, p− 1). Hence

N(xn + yn = 1) =
∑

a+b=1

N(xn = a)N(xn = b).

Definition 4.1. For a character χ, we call d its order if χd(a) = 1 for all a ∈ F×
p and any

d′ | d, d′ 6= d, there exists a ∈ F×
p , χd(a) 6= 1.

Proposition 4.6. Let χ be any character of order d = gcd(n, p− 1), then

N(xn = a) =

d−1∑
i=0

χi(a).

Proof. a = 0. Trivial.
a 6= 0 and a

p−1
d ≡ 1 (mod p), take g a primitive root modulo p, a = gds. Hence

d−1∑
i=0

χi(a) =

d−1∑
i=0

(χ(g))
dsi

= d.

a 6= 0 and a p−1
d 6≡ 1 (mod p), take g a p.r. and a = gd1s, where gcd

Ä
s, d

d1

ä
= 1. There exists

u, v s.t. us + d
d1
v = 1. So χ(gd1s) 6= 1, because otherwise we have χ(gd1us) = χ(gd1us+dv) =

χ(gd1) = 1, which is impossible. It follows that the original expression is equal to

d−1∑
i=0

χi(gd1s) =

d−1∑
i=0

χ(gsi)d1 = 0.

We now have

N(xn + yn = 1) =
∑

a+b=1

N(xn = a)N(xn = b) =
∑

a+b=1

d−1∑
i=0

χi(a)

d−1∑
j=0

χj(b) =

d−1∑
i=0

d−1∑
j=0

J(χi, χj)

= J(ε, ε) +

d−1∑
i=0

J(ε, χi) +

d−1∑
i=1

J(χi, ε) +

d−1∑
i=1

J(χi, χ−i) +
∑

i,j ̸=0,i+j ̸=0

J(χi, χj)

= p+ (−χ(−1))(p− 1) +
∑

i,j ̸=0,i+j ̸=0

g1(χ
i)g1(χ

j)

g1(χi+j)
.

As a result,
|N(xn + yn = 1)− p+ χ(−1)(p− 1)| ≤ (d2 − 3d+ 2)

√
p.
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Applications. When n = 2, take χ =
( ·
p

)
. Then

N(x2 + y2 = 1) = p− (−1)
p−1
2 .

When n = 3, take χ that has order 3. Then

N(x3 + y3 = 1) = p− 2χ(−1) + J(χ, χ) + J(χ, χ)

Because χ3(−1) = χ2(−1) = 1,

|N(xn + yn = 1)− p+ 2| ≤ 2
√
p.

Proposition 4.7. If p ≡ 1 (mod 4), then there exists a unique integer A and B s.t. A2+B2 = p,
up to sign.

Proof. Existence. Since p ≡ 1 (mod 4), we can construct a character χ of order 4 by assigning
the value of a primitive root g to i, χ(g) = i.

Consider J(χ, χ) =
∑

a+b=1 χ(a)χ(b) ∈ Z[i], we have

|J(χ, χ)| =
√
p
√
p

√
p

=
√
p.

Let J(χ, χ) = A+Bi, then A2 +B2 = p.
Uniqueness. Suppose that A2 + B2 = C2 +D2 = p. We know U(Z[i]) = {±1,±i} and Z[i]

is a Euclidean domain and thus a UFD. It suffices to prove that A+Bi is irreducible. Suppose
that A+Bi = (a+ bi)(c+ di) and a+ bi, c+ di /∈ Z[i]. But p = A2 +B2 = (a2 + b2)(c2 + d2). A
contradiction.

Proposition 4.8. If p ≡ 1 (mod 3), then there are integers A and B s.t. p = A2 −AB +B2.

Proof. Take χ : F×
p → C×, g 7→ ω. Similarly, |J(χ, χ)| = √

p. Let J(χ, χ) = a+ bω and we have
a2 − ab+ b2 = p.
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Proposition 5.1. Suppose p ≡ 1 (mod 3). There exists a unique A,B (up to sign) s.t. A2 +
27B2 = 4p.

Recall that we have proven there exists a, b s.t. a2 − ab+ b2 = p, so it suffices to prove that
4a2−4ab+4b2 can be written as the desired form. Notice that 4a2−4ab+4b2 = (2a− b)2+3b2,
but b might not be divisible by 3.
Lemma 5.2. For a2 − ab+ b2 = p, p ≡ 1 (mod 3), one of a, b and a− b is divisible by 3.
Proof. If a 6≡ 0 (mod 3) and b 6≡ 0 (mod 3), then a2 ≡ b2 ≡ 1 (mod 3), so

a2−ab+b2 ≡ 2−ab ≡ p ≡ 1 (mod 3) =⇒ ab ≡ (mod 3) =⇒ a ≡ b (mod 3).

Proof of Proposistion 5.1. Since a2 − ab + b2 = (a − b)2 − (a − b)(−b) + (−b)2, we can conlude
that there exists a, b s.t. 3 | a and a2 − ab + b2 = p. This completes the proof of existence of
A2 + 27B2 = p.

Now for uniqueness. Consider

A2 + 27B2

4
=
A+ 3

√
3iB

2

A− 3
√
3iB

2
,

where each component on the right hand side lies in Q[ω], with norm equal to p. Given that
A ≡ B (mod 2), we have

A+ 3
√
3iB

2
=
A+ 3B

2
+ 3ωB ∈ Z[ω].

Since Z[ω] is a Euclidean domain, A+3
√
3iB

2 is irreducible. Suppose A2
1+27B2

1 = A2
2+27B2

2 = p.
Then WLOG,

A1 + 3
√
3iB1

2
| A2 + 2

√
3iB2

2
,

or
A1 + 3

√
3iB1

2
u =

A2 + 2
√
3iB2

2
,

where u is a unit. However, we know U(Z[ω]) contains elements whose norms are equal to 1, so
U(Z[ω]) = {±1,±ω,±(1 + ω)}.

If u = ω, we could obtain A1 = 3B2, and 3 | A1, so 3 | p, a contradiction. Similarly, we can
tell that −ω,±(1 + ω) is also not possible.

Hence u = ±1, giving the uniqueness.

25
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Proposition 5.3. If χ is a character of order 3, and J(χ, χ) = a + bω, then a ≡ −1 (mod 3)
and b ≡ 0 (mod 3).

Proof. Since χ 6= χ,

J(χ, χ) =
g1(χ)g1(χ)

g1(χ2)
.

Calculate

g1(χ2) =

p−1∑
x=0

χ2(x)ζxp =

p01∑
x=0

χ(x)ζ−x
p = χ(−1)g1(χ) = g1(χ),

where the last equation is given by the fact that χ has order 3.
Recall |g1(χ)| =

√
p, so

g31(χ) = J(χ, χ)|g1(χ)|2 = J(χ, χ)p ≡ J(χ, χ) (mod 3).

On the other hand,

g31(χ) =

(
p−1∑
i=0

χ(i)ζip

)3

≡
p−1∑
i=0

(χ(i))
3 (
ζip
)3

=

p−1∑
i=1

ζ3ip = −1 mod 3Z[ζp, ω].

So
Z[ω] 3 J(χ, χ) ≡ −1 mod 3Z[ζp, ω],

and since Z[ω] ∩3 Z[ω, ζp] = 3Z[ω], we have J(χ, χ) ≡ −1 mod 3Z[ω]. It follows that

a+ bω ≡ −1 mod 3Z[ω] =⇒ a ≡ −1 (mod 3) b ≡ 0 (mod 3).

Corollary 5.4. N(x2 + y2 = 1) = p − 2 + A, where A is the unique positive solution of
A2 + 27B2 = 4p.

Proof. Calculate

N(x2 + y2 = 1) =

2∑
i=0

2∑
j=0

J(χi, χj)

= J(ε, ε) + 2J(χ, ε) + 2J(χ2, ε) + 2J(χ, χ2) + J(χ, χ) + J(χ2, χ2)

= p− 2 + J(χ, χ) + J(χ2, χ2) = p− 2 + 2Re(J(χ, χ))

= p− 2 + (2a− b).

Since |2J(χ, χ)|2 = 4p2 = (2a− b)2 + 3b2 = (2a− b)2 + 27b′2, where the last equation is because
b ≡ 0 (mod 3), from the uniqueness of A2 + 27B2 = 4p, 2a− b = A up to sign.

5.1 Finite Fields
Known. For prime p, F×

p is cyclic. We claim that any finite field is of the form Fpr , which is a
field extension of Fp for some p, especially of order pr.

Theorem 5.5. F×
q is cyclic.
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Proof. For α ∈ F×
q , let d be the smallest positive integer s.t. αd = 1, and call d the order of α.

αp−1 = 1. Let ψ(d) := #{α ∈ Fq | α has order d}. Then pr − 1 =
∑

d|pr−1 ψ(d) and

∑
d′|d

ψ(d′) = #{α | αd − 1 = 0} = 0.

By Möbius inversion,
ψ(d) =

∑
d′|d

d′µ

Å
d

d′

ã
= φ(d).

Hence ψ(pr − 1) = 0, there exists a primitive root of F×
q , and it is cyclic.

We are interested in considering the finite extensions of Fp, or Fq = Fp(α). To prove that
each finite field is isomorphic to some Fpr , and we are going to achieve this goal by the following
three steps.

1. Fpr = {x ∈ Fp | xpr − x = 0} is a field.

2. Any finite field F , there exists p s.t. pF = 0.

3. F is some algebraic extension of Fp, i.e. F = Fp[α1, . . . , αi], so we can embed F into Fp

with map φ : F ↪→ Fp. As φ(F ) ⊆ Fpr and they have the same size as sets, φ(F ) = Fpr .
Hence |F | = pr and all such F is isomorphic.

Proposition 5.6. General finite field F contains Fp for some p.

Proof. 1 ∈ F . Take m be the minimal positive integer s.t. m · 1 = 0. Prove m = p for some
p. Suppose otherwise, m = m1m2. This leads to m1 · 1 = 0 or m2 · 1 = 0, contradictory to the
minimality of m. Hence we have Fp = {0, 1, . . . , p− 1} ⊆ F .

Remark. p in the previous proof is called the character of F.

Proposition 5.7. The previously defined Fpr is a field.

Proof. For α, β ∈ Fpr ,

(α+ β)p
r

− (α+ β) = αpr

+ βpr

− α− β = 0

(αβ)p
r

− αβ = αβ − αβ = 0Å
1

α

ãpr

− 1

α
=

1

α
− 1

α
= 0.

Proposition 5.8. Any Fpr ⊂ Fps iff r | s.

Proof. “ ⇐= ”.

Fpr ⊆ Fps ⇐⇒ (∀α ∈ Fp s.t. αpr

− α = 0 =⇒ αps

− α = 0)

“ =⇒ ”. xpr − x | xps − x ⇐⇒ xp
r−1 − 1 | xps−1 − 1 ⇐⇒ pr − 1 | ps − 1 ⇐⇒ r | s.

Corollary 5.9. For any pr, there exists a finite field F s.t. |F | = pr.

Proof. Take F =
{
x ∈ Fp | xpr − x = 0

}
. Since (xp

r − x)′ = −1 6= 0, the polynomal has no
multiple roots and hence |F | = pr.
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Proposition 5.10. Any irreducible polynomial f ∈ Fp[x] of degree d divides xpd − x.

Proof. Take α be a root of f in Fp. We know Fp[α]| = pd, so Fp
∼= Fpd , and αpd − α = 0. On

the other hand, f is irreducible, so it is the minimal polynomial of α. f | xpd − x.

Corollary 5.11. Any irreducible polynomial f ∈ Fp[x] of degree d divides xpn − x iff d | n.

Proof. We first prove a lemma.

Lemma 5.12. Any irreducible f of order d′ > d, f ∤ xpd − x = 0

Proof. Suppose f | xpd − x. Take α a root of f . Then αpd − α = 0, so α ∈ Fpd . But
|Fpd | = pd

′
> pd = |Fpd |, a contradicition to α ∈ Fpd .

By virtue of the lemma, we are able to prove that any irreducible f of order d′, f | xpd − x
iff d′ | d.

Theorem 5.13. Let Fd(x) be the product of all distinct irreducible polynomials of degree d in
Fp[x]. Then ∀n ≥ 1 we have ∏

d|n

Fd(x) = xp
n

− x.

Proof. Since Fp[x] is a Euclidean domain, we can write

xp
n

− x =
∏

f irreducible
fef =

∏
f irreducible,deg f |n

f.

So f | Fd(x) for some d and it suffices to prove that ef = 1. Suppose not. Let f0 be one of f s.t.
ef0 ≥ 2.

−1 =
Ä
xp

n

− x
ä′

=

Ñ∏
f

fef

é′

=
Ä
ef0f

ef−1
0

äÑ∏
f ̸=f0

fef

é
+

Ñ∏
f ̸=f0

fef

é′

.

Plugging in α a root of f0 provides a contradiction.

Let Td be the number of irreducible polynomial of degree d in F. From deg(Fd) = Tdd, we have∑
d|n Tdd = pn. By Möbius inversion,

Tn =
1

n

∑
d|n

µ
(n
d

)
pd.

We turn to examine the equations in finite fields.

Theorem 5.14 (Chevally’s theorem). If F = Fq, q = pr, let f(x) ∈ F[x] := F [x1, . . . , xn].
Suppose

1. F (0) = 0.

2. n > deg f := maxi∈I{i1 + · · ·+ in} = d, where f =
∑

i∈I cix
i1
1 · · ·xinn

Then f has at least q roots in An(F ) = {(x1, . . . , xn) ∈ Fn}.
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Proof. Take Nf :=
∑

a∈An(F )(1 − f(a)q−1) is the number of roots of f . Then it is enough to
show q | Nf .

deg f = d, deg fq−1 = d(q − 1). fq−1 =
∑

j∈I cjx
j1
1 · · ·xjnn . For any j ∈ I, at least one of

i ∈ {1, . . . , n} satisfies ji < q − 1. Fix other items and let xi runs through F .

Lemma 5.15. ∑
x∈F

xi =


|F | − 1, q − 1 | i, i 6= 0,

|F |, i = 0,

0, q − 1 ∤ i.

So q |
∑

a∈Fn cix
j1
1 · · ·xjnn and hence

q |
∑
a∈Fn

f(a)q−1 =⇒ q | Nf =⇒ Nf ≥ q.

More generally, we have the following theorem.

Theorem 5.16 (Ax, Katz). Let f1, . . . , fr ∈ F [x1, . . . , xn] be polynomials of degree di ≥ 1.
Suppose

∑r
i=1 di < n, then let Mf =

†
n−

∑r
i=1 di

max1≤i≤r di

£
. Then Nf := {x ∈ AFn | fi(x) = 0} satisfies

qMf | Nf .

5.2 Hasse-Weil Zeta Function
Definition 5.1. Define a variety X over Fq by X :=

{
(x1, . . . , xn) ∈ Fp | fi(x) = 0, 1 ≤ i ≤ r

}
.

And X(Fqm) := {(x1, . . . , xn) ∈ Fqm | f1(x) = · · · = fr(x) = 0}

Definition 5.2. If Nm(X) := #X(Fpm), then the Hasse-Weil zeta function is defined to be

Z(X, t) := exp
∑
m≥1

Nm(X)

m
tm ∈ Q[[t]].

Example. X = An
Fp

, |X(Fpm)| = |Nm(X)| = pmn.

Z(An
Fp
) = exp

Ñ∑
m≥1

pmn

m
tm

é
= e− ln(1−pnt) =

1

1− pnt
.

Definition 5.3. Define Pn
Fp

:=
Ä
An+1

Fp
\ {0}

ä
/ ∼, where ∼ is defined by

(a1, . . . , an+1) ∼ (b1, . . . , bn+1) ⇐⇒ ∃0 6= c ∈ Fp s.t. aic = bi.

Example. Calculate

Nm(Pn
Fp
) =

p(n+1)m − 1

pm − 1
.

And

Z(Pn
Fp
) = exp

( ∞∑
m=1

p(n+1)m − 1

m(pm − 1)
tm

)
=

1

1− t
· · · 1

1− pnt
.
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L’algèbre n’est qu’une géométrie écrite; la géometrie n’est qu’une algèbre figurée.
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6.1 Hasse-Weil zeta function
Last time we defined the function locally over Fp, where

Z(X,T ) := exp

( ∞∑
m=1

Nm(x)

m
Tm

)
.

Theorem 6.1 (Weil conjecture). Let X be a smooth projective variety over Fp.

1. (Rationality). Z(X, s) = P (T )
Q(T ) ∈ Q(T ).

2. (Functional equation). Z
Ä
X, 1

pnT

ä
= ±pdimXE/2TEZ(X,T ), where E is the Euler charac-

teristic number of X.

3. Z(X,T ) = P1(T )···P2n−1(T )
P0(T )···P2n(T ) , where Pi ∈ Z[T ]. If we write Pi(T ) =

∏
j(1 − αijT ) with

aij ∈ C, then |aij | = p
i
2 .

Remark (Special case). If f ∈ Fp[x] is a homogenous polynomial of degree d, take the hypersurface
defined by f .

Hf :=
{
x ∈ F p | f(x) = 0

}
.

Then dimHf = n− 1, and

Z(Hf , T ) =
PT (−1)n

(1− T ) · · · (1− pn−1T )
.

where roots has norm p
n−1
2 pure of weight n− 1. degP (T ) = d−1((d− 1)n+1 + (−1)n+1(d− 1)).

Definition 6.1 (Global version). Let K be a number field.

Z(V, S) :=
∏

p prime ideal in Ok

Z(Vp, |N(p)|s),

where N(p) the norm of p as prime ideal and

Vp =
{
x ∈ Fp | f1 mod p, . . . , fm mod p

} 1.
1only when Vp has good reduction

31
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Example (Riemann zeta function).
∞∑

n=1

1

ns
= Z(spec(Z), p−s) =

∑
p prime

Å
1− 1

ps

ã−1

.

In the following we will mostly be concerned with the Riemann zeta function and its gener-
alization, the L function.

Lemma 6.2.
∞∑

n=1

1

ns
=
∏
p

Å
1− 1

ps
)−1

ã
=
∏
p

( ∞∑
k=0

1

psk

)
.

Proof. Fix s. For N , consider primes p < N .
N∑

n=1

1

ns
<
∏
p<N

( ∞∑
k=0

1

pks

)
<

∞∑
n=1

1

ns
.

By squeeze lemma, we complete the proof.

We denote the Riemann zeta function by

ζ(s) :=

∞∑
n=1

1

ns
,

and
Ä
1− 1

ps

ä−1
the Euler factor of ζ(s).

We would like to find the meromorphic extension of f(s) :=
∑∞

n=1
1
ns to C. Known f(s) is

defined for Re(s) > 1, andÅ
1− 2

2s

ã
f(s) =

1

1s
− 1

2s
+

1

3s
+ · · · =

∞∑
n=1

(−1)n−1 1

ns

is defined for Re(s) > 0 (Dirichlet criterion). Define

f(s) :=

∑ (−1)n

ns

1− 2
2s

.

WTS f(s) has a unique pole at s = 1, which is simple. Zeros of 1 − 2
2s = 0 are s = 1 − 2πni

2 ln 2 ,
n ∈ Z. But the nominator may be zero, so we consider another extension. Since if F1 and F2

are the meromorphic extension of f over Re(s) > 0, then F1 = F2, we consider

f2 =

Å
1− 3

3s

ã ∞∑
n=1

1

ns
=

1

1s
+

1

2s
− 2

3s
+ · · ·

which converges over Re(s) > 0. Define F2 = f2
1− 3

3s
. The possible pole points s = 1 − 2πni

ln 3 for
n ∈ Z. Note ß

1− 2πni

ln 3
| n ∈ Z

™
∩
ß
1− 2πni

ln 2
| n ∈ Z

™
= 1

as ln 2
ln 3 irrational. Hence

ζ(s) =

∞∑
n=1

1

ns
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can be extended to Re(s) > 0. In the strip 0 < Re(s) < 1, we have

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s).

By means of this functional equation, we can in fact extend ζ(s) to the whole plane C.
Known ζ(s) = a

s−1 + η(s) around s = 1, where η(s) is analytic. We would like to determine
a.

Lemma 6.3.
lim

R∋s→1+
ζ(s)(s− 1) = 1

Proof.
1

ns
<

∫ n

n−1

t−sdt <
1

(n− 1)s
.

Hence after summation
∞∑

n=2

1

ns
<

∫ ∞

2

1

ts
dt <

∞∑
n=1

1

ns
,

where ∫ ∞

2

1

ts
dt = − 1

s− 1

1

ts−1

∣∣∣∣∞
2

=
1

s− 1

1

2s−1
.

Hence we have (s−1)ζ(s)− (s−1) = (s−1)
∑∞

n=2
1
ns <

1
2s−1 and (s−1)ζ(s) > 1

2s−1 . By squeeze
lemma, we have

lim
s→1+

(s− 1)ζ(s) = 1.

6.2 Dirichlet density theorem
Definition 6.2. A set of positive prime P is said to have Dirichlet density if

d(P) := lim
s→1+

∑
p∈P

1
ps

ln
Ä

1
s−1

ä
exists.

Proposition 6.4. 1. If P is finite, then d(P) = 0.

2. If P = {primes} \ {finite ptimes}, then d(P) = 1.

Proof. 1. The nominator is finite but the divisor tends to infinity.

2. WLOG, let P = {primes}. By a previous lemma,

lim
s→1+

ζ(s)

ln
Ä

1
s−1

ä = 1.

So we only need to consider

∑
p

1

ps
− ln ζ(s) =

∑
p

1

ps
−
∑
p

∞∑
k=1

1

kpks
=
∑
p

∞∑
k=2

1

kpks
.
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Moreover
∞∑
k=2

∑
p

1

kpks
≤

∞∑
k=2

∞∑
n=2

1

knks
≤

∞∑
k=2

1

k

Å
2

2ks
+

4

4ks
+ · · ·

ã
=

∞∑
k=2

1

k

( ∞∑
l=1

1

2l(ks−1)

)

=

∞∑
k=2

1

k

1

2ks−1

is bounded.
Hence d(P) = 1.

Proposition 6.5. There exists P s.t. d(P) is not defined.

Proof. We know when s→ 1+, ∑
p

1
ps

ln
Ä

1
s−1

ä → 1.

So there exists s > 1 s.t. ∑
p

1
ps1

ln
Ä

1
s1−1

ä > 3

4
.

Further there exists N1 > 0 s.t. ∑
p<N1

1
ps1

ln
Ä

1
s1−1

ä >
3

4
.

And for ε = 1
8 , there exists N2 > N1 s.t.∑

p>N2

1
ps1

ln
Ä

1
s1−1

ä < ε =
1

8

We know by the previous proposition,

lim
s→1+

∑
p<N1

1
ps

ln
Ä

1
s−1

ä = 0.

Take 1 < s2 < s1 s.t. ∑
p<N1

1
ps2

ln
Ä

1
s2−1

ä <
1

8

And N3 > N2 s.t. ∑
N2≤p≤N3

1
ps2

ln
Ä

1
s2−1

ä <
1

4

Continue this process, to get a series of N1, N2, N3, . . . and s1, s2, s3, . . . such that when s = sk,
the predominant component in the original summation∑

p
1
ps

ln
Ä

1
s−1

ä
is those satisfying p ∈ [N2i−1, N2i]. Take P = {p | p ∈ [N2k−1, N2k], k ∈ Z, and then according
to the process, the sum will be around 3

4 when s = s2k−1 and around 1
4 when s = s2k. Hence it

converges not.
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Definition 6.3. If we have χ : (Z/nZ)× → C×, define the Dirichlet character

χ : Z → C×

n 7→
®
χ(n), gcd(m,n) = 1

0, gcd(m,n) 6= 1.

Proposition 6.6. 1. χ(n+mk) = χ(n), ∀n, k ∈ Z.

2. χ(nk) = χ(n)χ(k).

3. χ(n) 6= 0, ∀ gcd(n,m) = 1.

For A an abelian group, let Â := {χ : A→ C× | group homomorphism}.

Lemma 6.7. Â is a group.

Lemma 6.8. Finite abelian group is isomorphic to

l⊕
i=1

(Z/riZ).

In particular, when r1 | r2 | · · · | rl.

Lemma 6.9. A ∼= Â for finite abelian group.

Proof. Let A =
¶
gi11 · · · ginn | 1 ≤ ij ≤ rj

©
, then

Â =
¶
χ : gi → ζsirj

©
∼=

l⊕
i=1

(Z/riZ).

Lemma 6.10. A a finite abelian group, χ, ψ ∈ Â and n = #A. Then

1.
∑

a∈A χ(a)ψ(b) = nδ(χ, δ).

2.
∑

χ∈“A χ(a)χ(b) = nδ(a, b).

Corollary 6.11. For χ, ψ Dirichlet characters modulo m, and a, b ∈ Z,

1.
∑m−1

a=0 χ(a)χ(a) = φ(m)δ(χ, ψ).

2.
∑

χ Dirichlet character χ(a)χ(b) = δ(a, b)φ(m), where

δ(a, b) =

®
1, a ≡ b (mod m)

0, otherwise.

Definition 6.4. For χ a Dirichlet characteristic modulo m, define the Dirichlet L-function

L(χ, s) :=

∞∑
n=1

χ(n)

ns
=
∏
p

Å
1− χ(p)

p

ã−1

.
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Remark. If χ0 is trivial characteristic, then

ζ(s) = L(χ0, s)
∏
p|m

Å
1− 1

ps
.

ã−1

Corollary 6.12. If m = 1, then
L(χ0, s) = ζ(s)

for Re(s) > 1.

Our goal is the following theorem.

Theorem 6.13 (Dirichlet prime density theorem).

d(Pa) =
1

φ(m)
,

where Pa = {p ≡ a (mod m) | p is a prime}.

Definition 6.5.

G(χ, s) :=
∑
p

∞∑
k=1

χ(pk)p−sk

k
= ln(L(χ, s)).

It is defined over Re(s) > 1.

Proposition 6.14.

lim
s→1+

G(χ0, s)

ln
Ä

1
s−1

ä = 1,

and G(χ, s) is bounded for χ 6= χ0.

This proposition leads to the Dirichlet prime density theorem, as

lim
s→1+

∑
χ χ(a)G(χ, s)

ln
Ä

1
s−1

ä = lim
s→1+

∑
χ(a)

∑
p

∑
k=1

χ(pk)p−sk

k

ln
Ä

1
s−1

ä = lim
s→1+

∑
χ(a)

∑
p χ(p)p

−s

ln
Ä

1
s−1

ä
= lim

s→1+

∑
p

∑
χ

χ
(
p
a

)
p−s

ln
Ä

1
s−1

ä = lim
s→1+

∑
p,p≡a (mod m)

φ(m)p−s

ln
Ä

1
1−s

ä = 1.

Proof of Proposition 6.14. Since L(χ0, s) = ζ(s)/
∏

p|m

Ä
1− 1

ps

ä−1
, and

lim
s→1+

ln ζ(s)

ln
Ä

1
s−1

ä = 1

we indeed have
lim

s→1+

lnL(χ0, s)

ln 1
s−1

= 1.

Lemma 6.15. For χ 6= χ0, Lχ, s) has an extension to an analytic function on Re(s) > 0.
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Take F (s) := exp
Ä∑

χG(χ, s)
ä
=
∏

χ L(χ, s). Then for real s > 1, we have F (s) ≥ 1. as

F (s) = exp

Ñ∑
χ

∑
p,k≥1

χ(pk)p−sk

k

é
= exp

Ñ ∑
p,k,pk≡1 (mod m)

φ(m)p−sk

k

é
≥ 1,

where the last equality is from

∑
χ

χ(a) =

®
φ(m), a ≡ 1 (mod m)

0, a 6≡ 1 (mod m).

Proposition 6.16 (Complex χ). If χ is complex, i.e., {χ(a) | a ∈ Z} 6⊆ R If χ is a complex
characterisitc modulo m, then L(χ, 1) 6= 0.
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