Notes of Elementary Number Theory

Yuang Lu

2025 Fall

Chapter 1

2025/9/11

Office Hour: Friday 4:00 p.m. - 5:00 p.m. Homework hand in before class.

1.1 Unique Factorization in Rings

Theorem 1.1. Any integer n can be written of the form

$$n=(-1)^{\varepsilon(n)}p_1^{r_1}\cdots p_m^{r_m},\quad \varepsilon(n)=\begin{cases} -1, & n<0,\\ 0, & n>0, \end{cases}$$

where p_i are prime numbers.

Proof. Existence. WLOG, n > 0. n = 1 is trivial. Suppose that the factorization works for any $m \le n - 1$. If n is prime number, OK. If n is not a prime, then $\exists \text{prime} p < n \text{ s.t. } p \mid n$. $n = pn_1, n_1 < n$. By induction, $n_1 = p_1^{r_1} \cdots p_m^{r_m}$, and $n = pp_1^{r_1} \cdots p_m^{r_m}$.

 $n=pn_1, n_1 < n$. By induction, $n_1=p_1^{r_1}\cdots p_m^{r_m}$, and $n=pp_1^{r_1}\cdots p_m^{r_m}$. Uniqueness. If $n=p_1^{r_1}\cdots p_m^{r_m}=q_1^{t_1}\cdots q_s^{t_s}$. $\exists 1\leq i\leq s, \text{ s.t. } p_1=q_i$. By induction, the factorization of $\frac{M}{p_1}$ is same to $\frac{M'}{p_1}$.

The goal of the course is to generalize this property to general rings.

Definition 1.1. Let R be an integeral domain if $ab = 0 \implies a = 0$ or b = 0.

We call $p \in R$ irreducible if $ab = p \implies a$ is a unit or b is a unit.

We call p a prime if $p \neq 0$ and $p \neq$ unit and $p \mid ab \implies p \mid a$ or $p \mid b$.

We ask when primes are always irreducibles and when irreducibles are always primes.

Proposition 1.2. prime \implies irreducible.

Proof. For a prime p, assume p = ab, so $p \mid ab$ and hence $p \mid a$ or $p \mid b$. Suppose $p \mid a$, then $\exists c \in R \text{ s.t. } pc = a$. We have pcb = p, and p(cb - 1) = 0. Since p is prime, $p \neq 0$. Since R is an integral domain, cb = 1 and thus b is a unit.

The converse is not true for general integral doamin.

Definition 1.2. If any $a \in R$ can be uniquely factored into the form

$$a = p_1^{r_1} \cdots p_m^{r_m},$$

with p_i being prime, then we call R uniquely factorization domain.

A natural consequence is that irreducibles are always primes.

Proposition 1.3. irreducible \implies prime.

Proof. If p is irreducible, \exists a factorization $p = up_1^{r_1} \cdots p_m^{r_m} = p_1b = p_1 \cdot \text{unit.}$ So p is a prime.

Definition 1.3. If any ideal I of R is principal, i.e., I = (a) for some $a \in R$, then R is a principal ideal domain.

An easy fact is that \mathbb{Z} is a PID. We would like to prove that for PIDs, irreducibles are primes and further prove that PID \subseteq UFD.

Assume R is a PID. $d \in R$ is called "the greatest common divisor" of a and b if it satisfies:

- $d \mid a \text{ and } d \mid b$.
- for any $d' \mid a$ and $d' \mid b$, we have $d' \mid d$.

Lemma 1.4. If d, d' are both g.c.d. of a and b, then $d = ud'^1$, for some unit u.

Proof. Since $d \mid d' \mid d$, then $\exists a, b \in R$ s.t. ad = d' and bd' = d, so abd = d. It implies that ab = 1 and hence d' = ad where a is unit.

Proposition 1.5. Any $a, b \in R$ have a g.c.d. d and (d) = (a, b) as ideals. (Under the assumption that R is a PID, and so are the results below.)

Proof. Since R is PID, we have (a,b) = (d) for some d, and hence $d \mid a, d \mid b$. For any $d' \mid a$ and $d' \mid b$, and since there exist s,t such that d = sa + tb, we have $d' \mid d$. By definition, d is g.c.d. of a and b.

Corollary 1.6. If a, b are coprime (i.e. their g.c.d. is 1) in R, then (a, b) = R.

Proposition 1.7. If R is PID, irreducible \implies prime.

Proof. For any irreducible $p \in R$, suppose that $p \mid ab$ and $p \nmid a$, then let $d = \gcd(p, a)$. $d \mid p \Longrightarrow \exists c \in R \text{ s.t. } p = cd$. If d is not a unit, $d = p \Longrightarrow p \mid a$. A contradiction. Hence d is a unit and a, p are coprime. There exists $s, t \in R$ s.t. as + tp = 1. abs + tpb = b and since $p \mid ab$ and $p \mid p$, we have $p \mid b$. p is prime.

Lemma 1.8. For any $m \in R$, there exists irreducible element $b \in R$ s.t. $b \mid m$.

Proof. Suppose m irreducible. Trivial.

Suppose m reducible. \exists non-units $a_1, b_1 \in R$ s.t. $a_1b_1 = m$. Apparently, if this lemma fails, then we obtain infinitely many reducibles $\{a_i\}$ s.t. $(a_i) \subseteq (a_{i-1})$ since

$$a_i = a_{i+1}b_{i+1} \tag{1.1}$$

. Consider

$$\bigcup_{i=1}^{\infty} (a_i),$$

which is an ideal of R. R is a PID, so there exists $b \in R$ s.t.

$$(b) = \bigcup_{i=1}^{\infty} (a_i).$$

But $\exists n \text{ s.t. } b = (a_n) \text{ and } (a_{n+m}) = (a_n) \text{ for any } m \geq 1, \text{ a contradiction to (1.1).}$

 $^{^{1}}$ Call such d and d' associate.

Theorem 1.9. PID \subseteq UFD.

Proof. For any $a \in R$, \exists irreducible b_1 , which is also prime, s.t. $a = b_1a_1$. And we have $a_1 = b_2a_2 \implies a = b_1b_2a_2$. If has to stop at some n by the argument of the previous lemma. We thus reach the conclusion that $a = b_1b_2 \cdots b_n$ with b_i being prime.

Definition 1.4. We call R a Noetherian domain if any chain of ideals is stable, i.e., for

$$I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$$

 $\exists n \text{ s.t. } I_n = I_m \text{ for any } m \geq n.$

Proposition 1.10. The above definition is equivalent to any ideal being finitely generated.

Proof. " \Longrightarrow ". Suppose $\exists I$ is not f.g., any $a_1 \in I$, $\exists a_2$ s.t. $a_2 \notin (a_1)$. $I \neq (a_1, a_2) \triangleq I_2 \Longrightarrow \exists a_3 \in I$ s.t. $a_3 \notin (a_1, a_2)$. $I_3 \triangleq (a_1, a_2, a_3)$. The process goes on and we obtain $I_1 \subsetneq I_2 \subsetneq I_3 \subseteq \cdots$. A contradiction to the original defintion.

"\(\iff \text{". For any } I_1 \subseteq I_2 \subseteq \cdots\). We know $I_0 \Delta \bigcup_{i=1}^{\infty} I_i$ is an ideal of R, so $\exists \alpha_1, \ldots, \alpha_m \in I_0$ s.t. $I_0 = (\alpha_1, \ldots, \alpha_m)$. Then $\exists n \text{ s.t. } \alpha_i \in I_n \text{ for any } i \in \{1, \ldots, m\}$. It follows that $I_n = I_0 = I_m$ for any $m \ge n$, and $I_n \subseteq I_m \subseteq I_0 = I_n$.

Question: What is the relation between Noetherian domains and UFDs? Take $K[x, y, z]/(x^2 - yz)$.

Proposition 1.11. If R is Noetherian, then R[x] is Noetherian.

Proof. For I an ideal in R, take $I_0 = \{f_a : f \in I\}$, where f_a is the leading coefficient of f. Then $\exists f_1, \ldots, f_s$ s.t. $(f_{1a}, \ldots, f_{sa}) = I_0$. We can only consider $f \in I$ s.t. $\deg(f) \leq \max\{f_1, \ldots, f_s\} - 1 \triangleq m$. Consider $I_1 = \{f_a : \deg(f) = m\}$, which is f.g. And further consider f with smaller degrees.

Then $K[x,y,z]/(x^2-yz)$ is Noetherian, but $x\mid x^2=yz$ yet $x\nmid y,x\nmid z$, so this ring is not UFD. For the converse, consider $R=\mathbb{C}[x_1,x_2,\ldots]$ which is not Noetherian, but a UFD.

Definition 1.5. We call R a Euclidean domain if there is a function

$$\lambda: R \setminus \{0\} \to \{0, 1, \dots\}$$

s.t. for any $a, b \in R$, $b \neq 0$, there exists $c, d \in R$, s.t. a = bc + d for d = 0 or $\lambda(d) < \lambda(b)$.

Example. \mathbb{Z} is Eucildean domain, since we can have $\lambda(n) = |n|$.

Proposition 1.12. Eucildean domain \implies PID.

Proof. Suppose R is a ED. For any ideal I of R let n be $\min\{\lambda(a) \mid a \in I \setminus \{0\}\}$. Let $a \in I$ s.t. $\lambda(a) = n$. Then (a) = I, else we have $b \in I \setminus (a)$, b = sa + r with $\lambda(r) < \lambda(a)$, which is impossible.

Example (Non-example). $R = \mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right]$ is PID but not ED.

Example. Some examples of ED.

- k[x], k is a field, $\lambda(f) \triangleq \deg(f)$.
- $k[[x]], \lambda(f) = \{n : a_m \neq 0\}.$

• $k\langle x\rangle \triangleq \{f \in k[[x]] : \lim_{i\to\infty} a_i = 0\}$, where k satisfies strong triangluar inequality², with $\lambda(f) = \{i : a_i \neq 0\}$.

Proposition 1.13. $\mathbb{Z}[i]$ is ED with $\lambda(a+bi) = a^2 + b^2$.

Proof. For $c+di, a+bi \neq 0$, WTS $\exists s, r$ s.t. $s(a+bi)+r=c+di, \ \lambda(s)<\lambda(a+bi)$. Let $\frac{c+di}{a+bi}=\alpha+\beta i\in \mathbb{R}+\mathbb{R}i. \ \exists m,n\in \mathbb{Z} \text{ s.t. } |m-\alpha|<\frac{1}{2},\ |n-\beta|<\frac{1}{2}.$ Consider c+di=(a+bi)(m+ni)+A+Bi. Then

$$\alpha + \beta i - (m+ni) = \frac{A+Bi}{a+bi},$$

SO

$$\lambda(A+Bi) = \lambda(a+bi)\lambda((\alpha-m)+(\beta-n)i) < \lambda(a+bi).$$

Remark. $\mathbb{Z}[\omega]$ is a Euclidean domain with $\lambda(a+b\omega)=a^2+b^2+ab$, where $\omega=\frac{-1+\sqrt{-3}}{2}$. The proof is the same as above.

Proposition 1.14 (Application of Unique Factorization). In \mathbb{Z} , there are infinitely many prime numbers.

Proof. Suppose p_1, \ldots, p_m are all the primes of \mathbb{Z} . Consider $p_1 \cdots p_m + 1$. Since \mathbb{Z} is UFD,

$$p_1\cdots p_m+1=p_1^{r_1}\cdots p_m^{r_m}.$$

We must have $r_i = 0$, $p_1 \cdots p_m + 1 = 1$. A contradicition.

1.2 Möbius Function

Definition 1.6. The Möbius function μ is defined as

$$\mu(n) \triangleq \begin{cases} 1, & n = 1, \\ 0, & n \text{ is not square free,} \\ (-1)^m, & n = p_1 \cdots p_m \text{ for } p_i \neq p_j \text{ with } i \neq j. \end{cases}$$

Proposition 1.15. If n > 1,

$$\sum_{d|n} \mu(d) = 0.$$

Proof. Let $n = \prod_{i=1}^m p_i^{r_i}$. Then

$$\sum_{d|n} \mu(d) = \sum_{d|n,p_1||d} \mu(d) + \sum_{d|n,p_1^2|d} \mu(d) + \sum_{d|n,p_1\nmid d} \mu(d)$$

$$= \sum_{d|\frac{n}{p_1^{r_1}}} \mu(d)(-1) + \sum_{d|\frac{n}{p_1^{r_1}}} \mu(d) = 0.$$

$$|a+b| \le \max\{|a|, |b|\}.$$

Some examples include p-adic integers \mathbb{Z}_p , with $\left|\sum_{i=0}^{\infty} a_i p^i\right| = p^{-\min\{i: a_i \neq 0\}}$

 $^{^2}$ In a field k with norm, the strong triangluar inequality is the following.

Chapter 2

2025/9/18

Theorem 2.1 (Möbius Inversion Theorem). If $F(n) = \sum_{d|n} f(d)$, then

$$f(n) = \sum_{d|n} \mu\left(\frac{n}{d}\right) F(d).$$

Remark. Notation: For $f, g : \mathbb{Z}_{\geq 0} \to \mathbb{R}$,

$$f \circ g(n) := \sum_{d|n} f(d)g\left(\frac{n}{d}\right).$$

Then the theorem is equivalent to $\mu \circ F = \mu \circ f \circ \varphi$.

Proof. We have

$$\mu \circ f \circ \varphi = f \circ (\mu \circ \varphi) = f \circ \delta_{1n} = f$$

Definition 2.1. The following function is called *Euler function*.

$$\phi(n) = \# \{1 < a < n \mid (a, n) = 1\}.$$

Lemma 2.2. $\phi(mn) = \phi(m)\phi(n)$ if gcd(m, n) = 1.

Proof. The following map is an isomorphism.

$$U(mn) \to U(m) \times U(n)$$

$$\overline{a} \mapsto (a \mod m, a \mod n).$$

Theorem 2.3. $\phi \circ \varphi(n) = n$.

Proof. If n=1, trivial. Suppose that for $n\geq 1$, this result holds for any $m\leq n-1$. Write $n = p_1^{r_1} \cdots p_n^{r_n}.$ If n = p,

If
$$n = p$$
.

$$\sum_{d|p} \phi(d) = \phi(p) + \phi(1) = p - 1 + 1 = p.$$

Else, $n = p_1 m, m \ge 2$.

$$\sum_{d|n} \phi(d) = \sum_{d|n, p_1^{r_1}|d} \phi(d) + \sum_{d|n, p_1^{r_1}|d} \phi(d) = \sum_{d|n/p_1^{r_1}} \phi(d) + \sum_{d|n/p_1} \phi(d) = \phi(p_1^{r_1}) \frac{n}{p_1^{r_1}} + \frac{n}{p_1} = n. \quad \Box$$

2.1 Congruence

Notation: $m \in \mathbb{Z}_{>1}$. $a, b \in \mathbb{Z}$. For $a, b \in \mathbb{Z}$, if $m \mid a - b$, then we put $a \equiv b \pmod{m}$.

Proposition 2.4. 1. $a \equiv a \pmod{m}$.

- 2. $a \equiv b \pmod{m}$, then $b \equiv a \pmod{m}$.
- 3. $a \equiv b \pmod{m}$, $b \equiv c \pmod{m}$, then $a \equiv c \pmod{m}$.

Thus \equiv is an equivalent relation.

Definition 2.2. Fix $m \in \mathbb{Z}_{\geq_1}$. Put $\overline{a} := \{a + km \mid k \in \mathbb{Z}\} = a + m\mathbb{Z}$. Call \overline{a} a congruence class modulo m.

Proposition 2.5. 1. $\overline{a} = \overline{b}$ iff $a \equiv b \pmod{m}$.

- 2. $\overline{a} = \overline{b}$ iff $a \not\equiv \pmod{m}$ iff $\overline{a} \cap \overline{b} = \emptyset$.
- 3. There are precisely m congruence classes modulo m, namely $\overline{0}, \overline{1}, \dots, \overline{m-1}$.

Definition 2.3. Map

$$\bar{\cdot}_m: \mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$$

$$a \mapsto a + m\mathbb{Z}$$

is a ring homomorphism.

We often write $\overline{\cdot} := \overline{\cdot}_m$.

For any $f(\underline{x}) = \sum_{I \in \mathbb{Z}_{\geq 0}^n} a_I \underline{x}^I$, we put $\overline{f} = \sum_{I \in \mathbb{Z}_{\geq 0}^n} \overline{a}_I \underline{x}^I \in \mathbb{Z}/m\mathbb{Z}[\underline{x}]$. The number of solutions of f(x) = 0 modulo m is the number of

$$(\overline{b}_1,\ldots,\overline{b}_n)\in (\mathbb{Z}/m\mathbb{Z})^n$$

s.t.
$$\overline{f}(b_1, ..., b_n) = 0$$
.

Definition 2.4. $ax \equiv b \pmod{m}$ has solution iff $gcd(a, m) \mid b$. If it has solution, the number of solutions is equal to gcd(a, m).

Proof. Let $d := \gcd(a, m)$. " \iff ". $ax \equiv b \pmod{m} \iff \frac{a}{d}x \equiv \frac{b}{d} \pmod{\frac{m}{d}}$. Since $\gcd\left(\frac{a}{d}, \frac{m}{d}\right) = 1$, $\exists s, t \in \mathbb{Z}$ s.t. $s\frac{a}{d} + t\frac{m}{d} = 1$ and hence

$$\frac{a}{d}s\frac{b}{d} \equiv \frac{b}{d} \pmod{\frac{m}{d}}.$$

" \Longrightarrow ". Suppose for some $x, ax \equiv b \pmod{m}, \exists k \in \mathbb{Z}, ax - b = km. \ d \mid ax - km = b$. For the second part, since $\exists s, t \in \mathbb{Z}$ s.t. $s = \frac{a}{d} \equiv 1 \pmod{\frac{m}{d}}, \ x \equiv \frac{b}{d} s \pmod{\frac{m}{d}}$. Hence $\left\{x + \frac{m}{d}i : i = 0, 1, \dots, d - 1\right\}$ is the set of solution of $ax \equiv b \pmod{m}$.

Corollary 2.6. If gcd(a, m) = 1, then $ax \equiv b \pmod{m}$ has unique solution.

Corollary 2.7. $ax \equiv b \pmod{p}$, where $a \not\equiv 0 \pmod{p}$ has unique solution.

Proposition 2.8. An element \bar{a} in $\mathbb{Z}/m\mathbb{Z}$ is a unit iff $\gcd(a,m)=1$.

Proof. \overline{a} is a unit iff $ax \equiv 1 \pmod{m}$ has solution iff $\gcd(a,m) \mid 1$ iff $\gcd(a,m) \equiv 1$.

2.1. CONGRUENCE 9

As a result, there are exactly $\phi(m)$ units in $\mathbb{Z}/m\mathbb{Z}$.

Proposition 2.9. $\mathbb{Z}/m\mathbb{Z}$ is a field iff m=p.

Proof. If m = p, by the above corollary.

Otherwise $m = m_1 m_2$, with $m_1, m_2 \ge 2$, known $\overline{m_1 m_2} = 0$ but $\overline{m_1} \ne 0 \overline{m_2} \ne 0$. It follows that $\overline{m_1}, \overline{m_2}$ are zero divisors. $\mathbb{Z}/m\mathbb{Z}$ is not an ID hence not a field.

Corollary 2.10 (Euler's Theorem). If (a, m) = 1, then

$$a^{\phi(m)} \equiv 1 \pmod{m}$$
.

Define $U(\mathbb{Z}/m\mathbb{Z}) := \{ \overline{a} \in \mathbb{Z}/m\mathbb{Z} \mid \exists \overline{b}, \overline{ab} = \overline{1} \}$ is a group under \times .

Proof.
$$\overline{a}^{\#U(\mathbb{Z}/m\mathbb{Z})} = \overline{1}$$
.

Theorem 2.11 (Fermat's little theorem). $gcd(a, p) = 1 \implies a^{p-1} \equiv 1 \pmod{p}$.

Proposition 2.12 (Wilson's theorem).

$$(p-1)! \equiv -1 \pmod{p}.$$

Proof. For any $a \not\equiv 1, p-1, a \in \{1, \dots, p-1\}$, $\exists b \not\equiv a \text{ s.t. } ab \equiv 1 \pmod{p}$. Make a pairing $(a, \sigma(a)), \dots$ in the above way with $\frac{p-3}{2}$ pairs. Then

$$(p-1)! \equiv 1 \cdot (p-1) \sum_{i=1}^{p-3} a_i \sigma(a_i) \equiv -1 \pmod{p}.$$

Generalization. Suppose R is a PID. For any $a, b, m \in R$, $ax \equiv b \pmod{m}$ has solution iff $b \in (a, m)$, i.e. $\gcd(a, m) \mid b$. The number of solutions can be infinite, as in $R = \mathbb{C}[t]$,

$$(t-a)x \equiv 0 \pmod{(t-a)(t-b)}$$

has all z(t-b) as its solutions.

Proposition 2.13. R/(m) is field iff m is prime.

Proof. m is a prime, then for any $a \notin (m)$, WTS $\exists b \in R$, s.t. $ab \equiv 1 \pmod{m}$. Since (a, m) = R, there exists $b, t \in R$ s.t. ab + mt = 1.

If m is not a prime, then it is not irreducible, and hence $m = m_1 m_2$ where m_1 , m_2 are not units. Then m_1 , m_2 are both zero-divisors in R/(m), contradicting with R/(m) being a field. \square

Corollary 2.14. If $f \in k[x]$ is irreducible, then k[x]/(f(x)), often called residue field.

Lemma 2.15. R is PID. If a_1, \ldots, a_n are all coprime to m, so is $a_1 \cdots a_n$.

Proof. Since U(R/(m)) is a group. $\overline{a} = a + (m) \in U(R/(m))$ iff (a, m) = R. Hence if a_1, \ldots, a_m are all coprime to m, then $a_1 \cdots a_m \in U(R/(m))$.

Lemma 2.16. Suppose that a_1, \ldots, a_n all divide m, and $gcd(a_i, a_j) = 1$ for all $i \neq j$, then $a_1 \cdots a_m$ divides m.

Proof. By induction, it is enough to consdier n=2 case. Suppose gcd(a,b)=1 and $a\mid m,b\mid m$. There exists c s.t. ac=m. WTS $b\mid c$. $\exists s,t$ s.t. as+bt=1, and hence acs+bct=c. b divides LHS so divides RHS=c as well.

Theorem 2.17 (General Chinese Remainder Theorem). Suppose m_1, \ldots, m_n are pairwise coprime. $m_1 \cdots m_n = m$. Then

$$\begin{cases} x \equiv b_1 \pmod{m_1} \\ \vdots \\ x \equiv b_n \pmod{m_n} \end{cases}$$
 (2.1)

has unique solution $x \mod m$.

Proof. By Lemma 2.15, m_j and $\frac{m}{m_j}$ are coprime. $\exists u_j, v_j \in R \text{ s.t. } u_j m_j + v_j \frac{m}{m_j} = 1$. Then

$$v_j \frac{m}{m_j} \equiv \begin{cases} 1, & \mod m_j, \\ 0, & \mod m_i \text{ where } i \neq j. \end{cases}$$

Take

$$x = \sum_{j=1}^{n} b_j v_j \frac{m}{m_j}$$

as a solution of (2.1).

Suppose x, y are both solution of (2.1). Then $x - y \equiv 0 \pmod{m_j}, j \in \{1, \dots, n\}$. By Lemma 2.16 we have $m \mid x - y$ or $x \equiv y \pmod{m}$.

Proposition 2.18. If $m = m_1 \cdots m_n, m_1, \dots, m_n$ are pairwise coprime, then

$$\varphi: R/(m) \to R/(m_1) \times \cdots \times R/(m_n)$$

 $a + (m) \mapsto (a + (m_1), \dots, a + (m_n))$

is a ring isomorphism.

Proof. By CRT, φ is surjective. By Lemma 2.16, φ is injective.

Corollary 2.19.

$$U(R/(m)) \cong U(R/(m_1)) \times \cdots \times U(R/(m_n)).$$

Corollary 2.20. $R = \mathbb{Z}, m = p_1^{r_1} \cdots p_n^{r_n}$, then

$$\mathbb{Z}/m\mathbb{Z} \cong \mathbb{Z}/\left(p_1^{r_1}\right)\mathbb{Z} \times \cdots \times \mathbb{Z}/\left(p_n^{r_n}\right)\mathbb{Z}$$
$$U(\mathbb{Z}/m\mathbb{Z}) \cong U(\mathbb{Z}/\left(p_1^{r_1}\right)\mathbb{Z}) \times \cdots \times U(\mathbb{Z}/\left(p_n^{r_n}\right)\mathbb{Z})$$

To study the structure of $U(\mathbb{Z}/n\mathbb{Z})$, we only need to study each $U(\mathbb{Z}/(p_i^{r_i})\mathbb{Z})$. Our goal is to prove that $U(\mathbb{Z}/p^r\mathbb{Z})$ is cyclic.

Proposition 2.21 (Step One). $U(\mathbb{Z}/p\mathbb{Z})$ is cyclic.

Lemma 2.22. Let $f \in k[x]$, k is a field. Then f has at most deg f roots in k.

Proof. By induction. n = 1, OK.

Suppose that it holds for any $m \le n$. Consider $\deg f = n + 1$. If f has no root in k, trivial. Otherwise, $\alpha \in k$ is a root of k. $f(x) = (x - \alpha)g(x)$ with $\deg g = n$. By induction, the number of roots of g in $k \le n$.

Proposition 2.23.

$$x^{p-1} - 1 \equiv (x-1)(x-2)\cdots(x-p+1) \pmod{p}.$$
 (2.2)

2.1. CONGRUENCE 11

Proof. (2.2) $\iff x^{p-1}-1=(x-1)\cdots(x-p+1)$ in $\mathbb{F}_p[x]$. Given that $\forall p\nmid i\ i^{p-1}-1\equiv 0\pmod p$, i.e. $1,\ldots,p-1$ are distinct roots of $x^{p-1}-1$. By Lemma 2.22, $x^{p-1}-1=(x-1)\cdots(x-p+1)$. \square

Another proof of Wilson's theorem. Take x = 0, then

$$-1 \equiv (-1)(-2)\cdots(-p+1) \equiv (p-1)(p-2)\cdots(p-p+1) \equiv (p-1)! \pmod{p}.$$

Proposition 2.24. If $d \mid p-1$, then $x^d \equiv 1 \pmod{p}$ has exactly d distinct roots in $\mathbb{Z}/p\mathbb{Z}$.

Proof. Since

$$x^{p-1} - 1 = (x^d - 1) \left(x^{d(\frac{p-1}{d} - 1)} + \dots + 1 \right),$$

with the LHS has p-1 distinct roots, x^d-1 at most d, and the other component at most p-1-d, x^d-1 must have exactly d roots.

Proof of Proposition 2.21. Let $\psi(n) = \{i \in U(\mathbb{Z}/p\mathbb{Z}) \mid i \text{ has order } n \text{ in } U(\mathbb{Z}/p\mathbb{Z})\}$. Then

$$n=\#\{\overline{x}\in U(\mathbb{Z}/p\mathbb{Z})\mid x^n\equiv 1\pmod{m}\}=\sum_{d\mid n}\psi(d)=\sum_{d\mid n}\phi(d).$$

By Möbius inversion,

$$\psi(n) = \sum_{d|n} \mu(d) \frac{n}{d} = \phi(n).$$

Since $\psi(p-1) = \phi(p-1) \ge 1$, there exists $i \in U(\mathbb{Z}/p\mathbb{Z})$ s.t. \bar{i} has order p-1.

Proposition 2.25 (Step Two). $U(\mathbb{Z}/p^r\mathbb{Z})$ is cyclic for any $r \geq 1$.

Proof. r = 1, OK.

Suppose it holds for $r=n\geq 1$. Consider r=n+1. By inductive assumption, $\exists a\in\{1,\ldots,p^n-1\}$ s.t. $a^{p^{n-1}(p-1)}\equiv 1\mod p^n$ but not for smaller powers.

Consider a + kp, hope to determine some k s.t. a + kp is a primitive root of p^{n+1} . This is equivalent to finding a k s.t.

$$\begin{cases} a^{p^{n-1}(p-1)} \not\equiv 1 \pmod{p^{n+1}} \\ a^{p^n s} \not\equiv 1 \pmod{p^{n+1}}, \quad s \mid p-1 \text{ but } s \neq p-1. \end{cases}$$

Since

$$(a+kp)^{p^n s} = \left(a^{p^n} + a^{p^n - 1}kp \cdot p^n + \cdots\right)^s$$
$$\equiv a^{p^n s} \equiv a^{p^{n-1} s} \not\equiv 1 \pmod{(p^{n+1})}.$$

And

$$(a+kp)^{(p-1)p^{n-1}} \equiv a^{(p-1)p^{n-1}} + kp(p-1)p^{n-1}a^{(p-1)p^{n-1}-1}$$

$$\equiv 1 + bp^n + a^{-1}kp(p-1)p^{n-1} \mod p^{n+1}.$$

where $1 + bp^n \equiv a^{(p-1)n^{p-1}}$. Take $k(p-1) \not\equiv ab$ and we are done.

Goal: Solve $x^n \equiv a \pmod{m}$.

Definition 2.5. If $x^n \equiv a$ has solution, we call a an n-th power residue.

Chapter 3

2025/9/25

Since for finite Abelian group G, we have

$$G \cong \mathbb{Z}/m_1\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/m_l\mathbb{Z}.$$

Lemma 3.1. If $G \cong \mathbb{Z}/m_1\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/m_l\mathbb{Z}$, the equation nx = b is solvable in G, where $n \in \mathbb{Z}$ $b \in G$, iff $\gcd(n, m_i) \mid b_i$ iff $\frac{m_i}{d_i}b_i \equiv 0 \pmod{m_i}$, where $d_i = \gcd(m_i, n)$.

Goal: Find out when $x^n \equiv a \pmod{m}$ is solvable.

Lemma 3.2.

$$(\mathbb{Z}/2^e\mathbb{Z})^{\times} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{e-2}\mathbb{Z},$$

Proof. by proving that $(\mathbb{Z}/2^e\mathbb{Z})^{\times} = \{(-1)^i 5^j \mid i = 0, 1, j = 0, \dots, 2^{e-2}\}$. For j_1, j_2 s.t. $5^{j_1} \equiv 5^{j_2} \pmod{2^e}$, then $5^{j_1-j_2} \equiv 1 \pmod{2^e}$. If

$$(1+4)^k = 1 + 4k + 4^2 \binom{k}{2} \equiv 1 \pmod{2^e},$$

we have $k = 2^{e-2}$.

Proposition 3.3. Suppose that a is odd. The equation

$$x^n \equiv a \pmod{2^e}, \quad e \ge 3$$

has solution iff

- 1. n is odd, or
- 2. n is even, $a \equiv 1 \pmod{4}$, and

$$a^{\frac{e-2}{d}} \equiv 1 \pmod{2^e}$$
.

where $d = \gcd(e - 2, n)$.

Proof. Let $k=2^{e-2}$, 5 has order k in $(\mathbb{Z}/2^{e-2}\mathbb{Z}^{\times} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{e-2}\mathbb{Z})$. Let $a=(-1)^{i_a}5^{j_a}$. Then

$$i_a \cdot \frac{2}{\gcd(2,n)} \equiv 0 \pmod{2}$$

$$j_a \cdot \frac{2^{e-2}}{\gcd(2^{e-2},n)} \equiv \pmod{2^{e-2}}.$$

If n is odd, the condition is trivial.

If n is even, $i_a = 2 \iff a \equiv 1 \pmod{4}$, and

$$\left(5^{j_a}\right)^{2^{e-2}/\gcd(2^{e-2},n)} \equiv 1 \pmod{2^e} \iff a^{2^{e-2}/\gcd(2^{e-2},n)} \equiv 1 \pmod{2^e}.$$

Corollary 3.4. For $n = 2^l n_0$, $gcd(n_0, 2) = 1$, if $x^n \equiv a \pmod{2^{2l+1}}$ is solvable, so does $x^n \equiv a \pmod{2}^e$ for all $e \geq 2l+1$.

They have the same number of roots 2^{l} .

Proof. From $x^n \equiv a \pmod{2^{2l+1}}$ being solvable, we have

$$a \equiv 1 \pmod{4}$$

$$a^{2^{2l-1}/\gcd(2^{2l-1},n)} \equiv 1 \pmod{2^{2l+1}} \implies a^{l-1} \equiv 1 \pmod{2^{2l+1}}.$$

For any $e \geq 2l + 1$, consider

$$a^{2^{e-2}/\gcd(2^{e-2},n)} \equiv a^{2^{e-2}/2^l} = \left(a^{2l+1-2/2^l}\right)^{2^{e-(2l+1)}} = \left(1+k2^{2l+1}\right)^{2^{e-(2l+1)}} \equiv 1 \pmod{2^e}.$$

For e, the congruence equation has $gcd(n, 2^{e-2}) = 2^l$ solutions.

Known $(\mathbb{Z}/p^r\mathbb{Z})^{\times}$ is a cyclic group of order $p^{r-1}(p-1) = \phi(p^r)$.

Proposition 3.5. $x^n \equiv a \pmod{p^r}$ has solution iff $x^n \equiv a \pmod{p}$ has solution, where $\gcd(n,p)=1$.

Proof. $x^n \equiv a \pmod{p^r}$ has solution iff

$$a^{\phi(p^r)/\gcd(n,\phi(p^r))} \equiv 1 \pmod{p^r} \iff a^{p^{r-1}(p-1)/\gcd(n,p-1)} \equiv 1 \pmod{p^r}.$$

Suppose that it works for r = 1.

$$a^{p-1/\gcd(p-1,n)} = 1 + nk$$

Then

$$(1+pk)^{p^{r-1}} \equiv 1 \pmod{p^r}.$$

Remark. The number of solutions is gcd(n, p - 1).

For general $x^n \equiv a \pmod{m}$, write $m = 2^e p_1^{r_1} \cdots p_l^{r_l}$. And the condition and the number of solutions follows.

3.1 Quadratic residue

For p a prime, for any $a \in \mathbb{Z}$, define the Legendre symbol

$$\left(\frac{a}{p}\right) = \begin{cases} 1, & \text{if } x^2 \equiv a \pmod{p} \\ -1, & \text{if } x^2 \not\equiv \pmod{p} \\ 0, & \text{if } p \mid a. \end{cases}$$

Proposition 3.6. 1. $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod{p}$.

2.
$$a, b \in \mathbb{Z}, \left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right).$$

3. If
$$a \equiv b \pmod{p}$$
, $\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$.

Proof. Since $(\mathbb{Z}/p\mathbb{Z})^{\times} \cong \mathbb{Z}/(p-1)\mathbb{Z}$, $x^2 \equiv a \pmod{p}$ has solution iff $a^{p-1/\gcd(p-1,2)} \equiv 1 \pmod{p}$ iff $a^{\frac{p-1}{2}} \equiv 1 \pmod{p}$.

Theorem 3.7 (Law of quadratic Reciprocity). 1. $\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}} \pmod{p}$.

- 2. $\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}} \pmod{p}$.
- 3. For $p \neq q$ primes ≥ 3 ,

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}.$$

Proof. 1. Trivial.

2. Consider $1, 2, \ldots, \frac{p-1}{2}$. Since $i \equiv p - i = 2 \cdot \frac{p-i}{2} \pmod{p}$ for i odd. We have

$$\left(\frac{p-1}{2}\right)! = (-1)(-1) \cdot 2(-1)^2 \cdot (-3)(-1)^3 \cdots \left(\pm \frac{p-1}{2}\right) (-1)^{\frac{p-1}{2}}$$

$$= 2^{\frac{p-1}{2}} \left(\frac{p-1}{2}\right)! (-1)^{\sum_{i=1}^{\frac{p-1}{2}} k}.$$

Hence

$$2^{\frac{p-1}{2}} \equiv (-1)^{\frac{\left(1+\frac{p-1}{2}\right)\frac{p-1}{2}}{2}} = (-1)^{\frac{p^2-1}{8}}.$$

3. Consider the map

$$\phi: (\mathbb{Z}/pq\mathbb{Z})^{\times} \to (\mathbb{Z}/p\mathbb{Z})^{\times} \times (\mathbb{Z}/q\mathbb{Z})^{\times}$$
$$a \mapsto (a \mod p, a \mod q).$$

By CRT, ϕ is an isomorphism. Further, consider

$$S_{1} = \left\{1, \dots, \frac{p-1}{2}\right\} \times \{1, \dots, q-1\}$$

$$S_{2} = \{1, \dots, p-1\} \times \left\{1, \dots, \frac{q-1}{2}\right\}$$

$$S_{3} = \left\{1, \dots, \frac{pq-1}{2}\right\} \setminus \{k \mid q \mid k \text{ or } p \mid k\}.$$

Since S_1, S_2 contains exactly half of $(\mathbb{Z}/p\mathbb{Z})^{\times} \times (\mathbb{Z}/q\mathbb{Z})^{\times}$, S_3 half of $(\mathbb{Z}/pq\mathbb{Z})^{\times}$, we have

$$\prod_{x \in S_1} \phi(x) \stackrel{\text{up to sign}}{=} \prod_{x \in S_3} x.$$

Consider $\phi^{-1}\left(\prod_{x\in S_3} x\right)$. Since

$$S_3 = \{1, 2, \dots, p-1 \\ 1+p, 2+p, \dots, p-1+p \}$$

$$\vdots$$

$$1+\left(\frac{q-1}{2}-1\right)p, \dots, (p-1)+\left(\frac{q-1}{2}-1\right)p$$

$$1+\frac{q-1}{2}p, \dots, \frac{p-1}{2}+\frac{q-1}{2}p \} \setminus \{q, 2q, \dots, \frac{p-1}{2}q\}$$

So

$$\prod_{x \in S_3} = \left((p-1)! \right)^{\frac{q-1}{2}} \left(\frac{p-1}{2} \right)! / q^{\frac{p-1}{2}} \left(\frac{p-1}{2} \right)! = (p-1)^{\frac{q-1}{2}} \left(\frac{q}{p} \right) \pmod{p}.$$

Note that

$$S_1 = \left(\left(\frac{p-1}{2} \right)! \right)^{q-1} = S_3 \left(\frac{q}{p} \right) \pmod{p},$$

and similarly $S_2 = S_3(\frac{p}{q})$. We only need to find out the relation between S_1 and S_2 . But observe

$$S_1 = \left(\left(\frac{p-1}{2} \right)! \right)^{q-1}$$

$$S_2 = \left((p-1)! \right)^{\frac{q-1}{2}},$$

so $S_1 = (-1)^{\frac{p-1}{2} \frac{q-1}{2}} S_2$. And we are done.

Definition 3.1. The *Jacobi symbol* is defined for $m = \prod_{i=1}^{l} p_i$, where p_i could be equal to p_j , let

$$\left(\frac{n}{m}\right) = \left(\frac{n}{p_1}\right) \cdots \left(\frac{n}{p_l}\right).$$

Proposition 3.8. For n, m both odd, we have

$$\left(\frac{n}{m}\right)\left(\frac{m}{n}\right) = (-1)^{\frac{m-1}{2}\frac{n-1}{2}},$$

where gcd(m, n) = 1.

Proof. Suppose $m = \prod_{i=1}^{l} p_i, n = \prod_{j=1}^{s} q_j$, then

$$\left(\frac{m}{n}\right)\left(\frac{n}{m}\right) = \prod_{i,j} \left(\frac{p_i}{q_j}\right) \prod_{i,j} \left(\frac{q_j}{p_i}\right) = \prod_{i,j} \left(\frac{p_i}{q_j}\right) \left(\frac{q_j}{p_i}\right) = \prod_{i,j} (-1)^{\frac{p_i-1}{2}\frac{q_j-1}{2}} = (-1)^{\sum_{i,j} \frac{p_i-1}{2}\frac{q_j-1}{2}}.$$

WTS,

$$\sum_{i,j} \frac{p_i - 1}{2} \frac{q_j - 1}{2} = \frac{m - 1}{2} \frac{n - 1}{2} \pmod{2}.$$

This is easy since we have $\frac{rs-1}{2} \equiv \frac{r-1}{2} \frac{s-1}{2} \pmod{2}$ for odd r, s.

Proposition 3.9. Reproof of

$$\left(\frac{2}{p}\right) = (-1)^{\frac{p^2 - 1}{8}}.$$

Proof.

$$\begin{split} \left(\frac{2}{p}\right) &= \left(\frac{2-p}{p}\right) = \left(\frac{-1}{p}\right) \left(\frac{p-2}{p}\right) = \left(\frac{-1}{p}\right) \left(\frac{p}{p-2}\right) (-1)^{\frac{p-1}{2}\frac{p-3}{2}} \\ &= (-1)^{\frac{p-1}{2}} (-1)^{\frac{p-1}{2}\frac{p-3}{2}} \left(\frac{2}{p-2}\right) = (-1)^{\frac{p-1}{2}} \left(\frac{2}{p-2}\right) = (-1)^{\frac{p-1}{2}+\frac{p-3}{2}} \left(\frac{2}{p-4}\right) = \cdots \\ &= (-1)^{\sum_{k=2}^{\frac{p-1}{2}} k} \left(\frac{2}{p-3}\right) = (-1)^{\frac{p^2-1}{8}}. \end{split}$$

Remark. In the previous proof, we ommitted the proof of

$$\left(\frac{-1}{n}\right) = (-1)^{\frac{n-1}{2}},$$

which is easy.

3.2 Quadratic Gauss sum

Let $\zeta := e^{\frac{2\pi i}{p}}$.

Lemma 3.10. For $a \in \{0, ..., p-1\}$, let

$$\sum_{t=0}^{p-1} \zeta^{at} = \begin{cases} 0, & \text{if } a \neq 0 \\ p, & \text{if } a = 0. \end{cases}$$

Proof. If a = 0, $\zeta^{at} = 1$. We are done. If $a \neq 0$,

$$\left(\sum_{t=0}^{p-1} \zeta^{at}\right) \zeta^a = \sum_{t=0}^{p-1} \zeta^{at} \quad \Longrightarrow \quad \sum_{t=0}^{p-1} \zeta^{at} (\zeta^a - 1) = 0.$$

Since $\zeta^{at} \neq 0$, we are done.

Lemma 3.11.

$$\sum_{t=0}^{p-1} \left(\frac{t}{p}\right) = 0.$$

Proof. There are exactly $\frac{p-1}{2}$ $a \in \{1, \dots, p-1\}$ satisfying $x^2 \equiv a \pmod{p}$.

Definition 3.2. Let

$$g_a := \sum_{t=0}^{p-1} \zeta^{at} \left(\frac{t}{p} \right)$$

be the quadratic Gauss sum.

Proposition 3.12. $g_a = \left(\frac{a}{p}\right)g_1$, for gcd(a, p) = 1.

Proof.

$$g_a = \sum_{t=0}^{p-1} \zeta^{at} \left(\frac{at}{p} \right) \left(\frac{a}{p} \right) = g_1 \left(\frac{a}{p} \right).$$

Proposition 3.13.

$$g_1^2 = (-1)^{\frac{p-1}{2}}p.$$

Proof. Consider $\sum_{a=0}^{p-1} g_a g_{-a}$,

$$\sum_{a=0}^{p-1} g_a g_{-a} = \sum_{a=0}^{p-1} \sum_{x=0}^{p-1} \zeta^{ax} \left(\frac{x}{p} \right) \sum_{y=0}^{p-1} \zeta^{-ay} \left(\frac{y}{p} \right) = \sum_{x,y} \left(\frac{xy}{p} \right) \sum_{a=0}^{p-1} \zeta^{a(x-y)} = \sum_{x=0}^{p-1} \left(\frac{x^2}{p} \right) p = p(p-1)$$

With $g_0 = 0$,

$$p(p-1) = \sum_{a=1}^{g_a g_{-a}} = \sum_{a=1}^{p-1} {a \choose p} \left(\frac{-a}{p}\right) g_1^2 = (p-1) \left(\frac{-1}{p}\right) g_1^2.$$

Proposition 3.14. Reproof of quadratic reciprocity law.

Proof. Consider g_1^{q-1} . Let $g_1^2 = p(-1)^{\frac{p-1}{2}} := p^*$. So

$$g_1^{q-1} = (p^*)^{\frac{q-1}{2}} \equiv \left(\frac{p^*}{q}\right) \pmod{q}.$$

On the other hand,

$$g_1^q = \left(\sum_{t=0}^{p-1} \zeta^t \left(\frac{t}{p}\right)\right)^q \in g_q + q\mathbb{Z}[\zeta] = \left(\frac{q}{p}\right)g_1 + q\mathbb{Z}[\zeta].$$

Cancal out one g_1 on both sides,

$$\left(\frac{p^*}{q}\right) = g_1^{q-1} = \left(\frac{q}{p}\right) + \frac{q}{g_1}A, \quad A \in \mathbb{Z}[\zeta].$$

So

$$\left(\frac{p^*}{q}\right) - \left(\frac{q}{p}\right) \in q\mathbb{Z}\left[\zeta, \frac{1}{p}\right] \cap \mathbb{Z} = q\mathbb{Z} \quad \Longrightarrow \quad \left(\frac{p^*}{q}\right) = \left(\frac{q}{p}\right).$$

Therefore,

$$\left(\frac{q}{p}\right) = \left(\frac{(-1)^{\frac{p-1}{2}}p}{q}\right) = \left(\frac{-1}{q}\right)^{\frac{p-1}{2}} \left(\frac{p}{q}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}} \left(\frac{p}{q}\right).$$

Chapter 4

2025/10/9

Recall $g_1 = (-1)^{\frac{p-1}{2}} p$, so

$$g_1 = \begin{cases} \pm \sqrt{p}, & p \equiv 1 \pmod{4} \\ \pm i\sqrt{p}, & p \equiv 3 \pmod{4}. \end{cases}$$

Goal. Prove that

$$g_1 = \begin{cases} \sqrt{p}, & p \equiv 1 \pmod{4} \\ i\sqrt{p}, & p \equiv 3 \pmod{4}. \end{cases}$$

Consider

$$\begin{split} \prod_{i=1}^{\frac{p-1}{2}} \left(\zeta^{2i-1} - \zeta^{-(2i-1)}\right)^2 &= \prod_{i=1}^{\frac{p-1}{2}} \left(\zeta^{2i-1} - \zeta^{-(2i-1)}\right) \left(-1\right)^{\frac{p-1}{2}} \prod_{i=1}^{\frac{p-1}{2}} \left(\zeta^{-(2i-1)} - \zeta^{2i-1}\right) \\ &= \prod_{i=1}^{\frac{p-1}{2}} \left(1 - \zeta^{-2(2i-1)}\right) \prod_{i=1}^{\frac{p-1}{2}} \left(1 - \zeta^{2(2i-1)}\right) \left(-1\right)^{\frac{p-1}{2}}. \end{split}$$

Let $S=\left\{2i-1\mid i=1,\ldots,\frac{p-1}{2}\right\}\cup\left\{-(2i-1)\mid i=1,\ldots,\frac{p-1}{2}\right\}=\left\{p-2,\ldots,1,-1,\ldots,-p+2\right\},$ which is a complete set modulo p, and so is 2S. Hence the original expression is equal to

$$\prod_{i=1}^{p-1} (1 - \zeta^i) (-1)^{\frac{p-1}{2}} = p(-1)^{\frac{p-1}{2}} = g_1^2.$$

where the last equation is because of the following lemma.

Lemma 4.1.

$$\frac{x^p - 1}{x - 1} = 1 + x + \dots + x^{p - 1}.$$

Next we prove

$$\prod_{j=1}^{\frac{p-1}{2}} \left(\zeta^{2j-1} - \zeta^{-2j+1}\right) = \begin{cases} \sqrt{p}, & p \equiv 1 \pmod{4} \\ i\sqrt{p}, & p \equiv 3 \pmod{4}. \end{cases}$$

This is because

$$LHS = \prod_{j=1}^{\frac{p-1}{2}} 2i \sin \frac{2\pi(2j-1)}{p}.$$

Since the absolute value has been determined already, we only need to consider the signature. We have $0 < \frac{2\pi(2j-1)}{p} < 2\pi$, where $0 < \frac{2\pi(2j-1)}{p} < \pi$ iff $j < \frac{p+2}{4}$. If $p \equiv 1 \pmod{4}$, then $\frac{p-1}{2}$ is even, the signature is $i^{\frac{p-1}{2}}(-1)^{\frac{p-1}{4}} = (-1)^{\frac{p-1}{2}} = 1$. If $p \equiv 3 \pmod{4}$, then the signature is $i^{\frac{p-1}{2}}(-1)^{\frac{p-3}{2}} = i(-1)^{\frac{p-3}{2}} = i$.

Then it is time to prove

$$\prod_{i=1}^{\frac{p-1}{2}} \left(\zeta^{2i-1} - \zeta^{-(2i-1)} \right) = g_1.$$

Take $\epsilon_p \in \{\pm 1\}$ s.t.

$$\prod_{i=1}^{\frac{p-1}{2}} \left(\zeta^{2i-1} - \zeta^{-(2i-1)} \right) - \epsilon_p g_1 = 0.$$

Let $f(x) := \prod_{i=1}^{\frac{p-1}{2}} \left(x^{2i-1} - x^{p-(2i-1)} \right) - \epsilon_p \sum_{i=1}^{p-1} \left(\frac{i}{p} \right) x^i$ is a polynomial. $f(\zeta) = 0$. Study the minimal irreducible polynomial of ζ over \mathbb{Z} . $\zeta^p = 1$ and $1 + \zeta + \dots + \zeta^{p-1} = \frac{\zeta^p - 1}{\zeta - 1} = 0$.

Lemma 4.2.

$$F(x) := 1 + x + \dots + x^{p-1}$$

is irreducible over \mathbb{Q} .

Proof.

$$F(x+1) = \frac{(x+1)^p - 1}{x} = x^{p-1} + \sum_{i=1}^{p-1} \binom{p}{i} x^{i-1}.$$

The coefficients of F(x+1) form an Eisenstein series, so F(x+1) is irreducible and so is F(x). \square

We have $(1 + \dots + x^{p-1}) | f(x)$. On the other hand, f(1) = 0. Hence $(1 - x^p) = (x - 1)(1 + \dots + x^{p-1}) | f(x)$ and we can write

$$f(x) = (1 - x^p)g(x), (4.1)$$

where $g(x) \in \mathbb{Q}[x]$.

Take $x = e^z$. Compare $z^{\frac{p-1}{2}}$ of the Taylor expansions of two functions in (4.1).

$$e^{z(2i-1)} - e^{z(-2i+1)} = z(2i-1) - z(-2i+1) + \mathcal{O}(z^2) = z(4i-2) + \mathcal{O}(z^2).$$

Hence the coefficient of $z^{\frac{p-1}{2}}$ on the left hand side is

$$\prod_{i=1}^{\frac{p-1}{2}} (4i-2) - \epsilon_p \sum_{i=1}^{p-1} \left(\frac{i}{p}\right) i^{\frac{p-1}{2}} \frac{1}{\left(\frac{p-1}{2}\right)!}.$$

While on the right hand side,

$$(1 - e^{zp})g(e^z) \equiv 0 \pmod{p}.$$

This gives the congruence

$$\left(\frac{p-1}{2}\right)! \prod_{i=1}^{\frac{p-1}{2}} (4i-2) \equiv \epsilon_p \sum_{i=1}^{p-1} \left(\frac{i}{p}\right) i^{\frac{p-1}{2}} \equiv \epsilon_p (p-1) \equiv -\epsilon_p \pmod{p},$$

while

$$\left(\frac{p-1}{2}\right)! \prod_{i=1}^{\frac{p-1}{2}} (4i-2) = 2 \times \dots \times (p-1) \times 1 \times \dots \times (p-2) = (p-1)! \equiv -1 \pmod{p}.$$

Together we obtain $\epsilon_p = 1$. Goal achieved.

4.1 Gauss and Jacobi sum

Fact. $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}$ is a finite field. Call $\chi : (\mathbb{F}_p^{\times}, \times) \to \mathbb{C}^{\times}$ a multiplicative character if it is a group

homomorphism. Call $\chi: (\mathbb{F}_p, +) \to \mathbb{C}^{\times}$ a additive character if it is a group homomorphism. Hence, $(\frac{\cdot}{p}): \mathbb{F}_p^{\times} \to \mathbb{C}^{\times}$ is a multiplicative character. $a \mapsto \zeta^a$ is a additive character. So we can see the Gauss sum

$$g_a = \sum_{i=1}^{p-1} \left(\frac{i}{p}\right) \zeta^{ai}$$

as the sum of a mult-character multiplying an add-character.

For a general multiplicative character χ of \mathbb{F}_p , we put

$$g_a(\chi) := \sum_{i=0}^{p-1} \chi(i) \zeta^{ai}.$$

where

$$\chi(0) = \begin{cases} 0, & \chi \neq \epsilon \\ 1, & \chi = \epsilon, \end{cases}$$

where $\epsilon(a) \equiv 1$ is the trivial character.

Proposition 4.3.

$$g_a(\chi) = g_1(\chi)\overline{\chi(a)},$$

if
$$\chi \neq \epsilon$$
.

2.
$$q_a(\epsilon) = 0$$
, for $a \neq 0$.

3.
$$a = 0, \chi \neq \epsilon$$
, then $g_0(\chi) = 0$.

4.
$$a = 0, \chi = \epsilon$$
, then $g_0(\epsilon) = p$.

Proof.

$$g_a(\chi) = \sum_{i=0}^{p-1} \chi(i)\zeta^{ai} = \overline{\chi(a)} \sum_{i=1}^{p-1} \chi(ia)\zeta^{ai} = \overline{\chi(a)}g_1(\chi).$$

2.

$$g_0(\epsilon) = \sum_{i=0}^{p-1} \zeta^{ai} = \frac{1 - \zeta^{ap}}{1 - \zeta^p} = 0.$$

3. Since χ non-trivial, there exists $b \in \mathbb{F}_p^{\times}$ s.t. $\xi(b) \neq 1$.

$$g_0(\chi) = \sum_{i=0}^{p-1} \chi(i) = \sum_{i=0}^{p-1} \chi(ib) = 0.$$

4. Trivial.

Proposition 4.4.

$$|g_a(\chi)| = \sqrt{p}, \quad \xi \neq \epsilon.$$

Proof. Consider

$$\sum_{a=0}^{p-1} g_a(\chi) \overline{g_a(\chi)} = \sum_{a=0}^{p-1} \sum_{x=1}^{p-1} \chi(x) \zeta^{ax} \sum_{y=1}^{p-1} \overline{\chi(y)} \zeta^{-ay} = \sum_{x=1}^{p-1} \sum_{y=1}^{p-1} \chi\left(\frac{x}{y}\right) \sum_{a=0}^{p-1} \zeta^{a(x-y)} = \sum_{x=1}^{p-1} p = (p-1)p.$$

Suppose $\chi \neq \epsilon$,

$$\sum_{a=0}^{p-1} g_a(\chi) \overline{g_a(\chi)} = g_1(\chi) \overline{g_1(\chi)} \sum_{a=1}^{p-1} \overline{\chi(a)} \chi(a) = (p-1)|g_1(\chi)|^2.$$

Hence $|g_a(\chi)| = |g_1(\chi)| = \sqrt{p}$.

Another Proof.

$$g_1(\chi)\overline{g_1(\chi)} = \sum_{x=1}^{p-1} \chi(x) \zeta^x \sum_{y=1}^{p-1} \overline{\chi(y)} \zeta^{-y} = \sum_{x=1}^{p-1} \sum_{y=1}^{p-1} \chi\left(\frac{x}{y}\right) \zeta^{x-y} = \sum_{k=0}^{p-1} \zeta^k \sum_{y=1}^{p-1} \chi\left(\frac{y+k}{y}\right).$$

For $k \neq 0$, $\eta_k : \mathbb{F}_p^{\times} \to \mathbb{F}_p$, $y \mapsto \frac{y+k}{y}$ is injective, and $\operatorname{Im}(\eta_k) = \mathbb{F}_p \setminus \{1\}$. So the original expression is equal to

$$\sum_{k=1}^{p-1} \zeta^k(-1) + \zeta^0(p-1) = 1 + p - 1 = p.$$

For two multilicative character χ and λ of \mathbb{F}_p , we define

$$J(\chi, \lambda) := \sum_{a+b=1} \chi(a)\lambda(b),$$

called the Jacobi sum.

Goal. Compute the number of solutions of $x^n + y^n = 1$ in \mathbb{F}_p , denoted by $N(x^n + y^n = 1)$.

Proposition 4.5. For $\chi, \lambda \neq \epsilon$, and $\chi \lambda \neq \epsilon$,

- 1. $J(\epsilon, \epsilon) = p$.
- 2. $J(\epsilon, \chi) = J(\chi, \epsilon) = 0$.
- 3. $J(\chi, \chi^{-1}) = -\chi(-1)$.
- 4. $J(\chi, \lambda) = \frac{g_1(\chi)g_1(\lambda)}{g_1(\chi\lambda)}$

Proof. The first two is trivial.

$$J(\chi, \chi^{-1}) = \sum_{a \neq 0} \chi\left(\frac{1-a}{a}\right) = \sum_{i=0}^{p-1} \chi(i) - \chi(-1) = \chi(-1).$$

$$J(\chi, \lambda)g_1(\chi\lambda) = \sum_{a+b-1} \chi(a)\lambda(b) \sum_{c=0}^{p-1} \chi\lambda(c)\zeta^c = \sum_{a+b-1} \sum_{c=0}^{p-1} \chi(ac)\lambda(bc)\zeta^{ac+bc}.$$

Take d = ac, f = bc, then the original expression becomes

$$\sum_{d,f} \chi(d)\zeta^d \lambda(f)\zeta^f = g_1(\chi)g_1(\lambda).$$

Recall that

$$N(x^n = a) = \begin{cases} 1, & a = 0 \\ d, & a^{\frac{p-1}{d}} \equiv 1 \pmod{p} \\ 0, & \text{otherwise,} \end{cases}$$

where $d = \gcd(n, p - 1)$. Hence

$$N(x^{n} + y^{n} = 1) = \sum_{a+b=1} N(x^{n} = a)N(x^{n} = b).$$

Definition 4.1. For a character χ , we call d its order if $\chi^d(a) = 1$ for all $a \in \mathbb{F}_p^{\times}$ and any $d' \mid d, d' \neq d$, there exists $a \in \mathbb{F}_p^{\times}$, $\chi^d(a) \neq 1$.

Proposition 4.6. Let χ be any character of order $d = \gcd(n, p - 1)$, then

$$N(x^n = a) = \sum_{i=0}^{d-1} \chi^i(a).$$

Proof. a = 0. Trivial.

 $a \neq 0$ and $a^{\frac{p-1}{d}} \equiv 1 \pmod{p}$, take g a primitive root modulo $p, a = g^{ds}$. Hence

$$\sum_{i=0}^{d-1} \chi^i(a) = \sum_{i=0}^{d-1} (\chi(g))^{dsi} = d.$$

 $a \neq 0$ and $a^{\frac{p-1}{d}} \not\equiv 1 \pmod{p}$, take g a p.r. and $a = g^{d_1 s}$, where $\gcd\left(s, \frac{d}{d_1}\right) = 1$. There exists u, v s.t. $us + \frac{d}{d_1}v = 1$. So $\chi(g^{d_1 s}) \neq 1$, because otherwise we have $\chi(g^{d_1 u s}) = \chi(g^{d_1 u s + d v}) = \chi(g^{d_1}) = 1$, which is impossible. It follows that the original expression is equal to

$$\sum_{i=0}^{d-1} \chi^i(g^{d_1 s}) = \sum_{i=0}^{d-1} \chi(g^{si})^{d_1} = 0.$$

We now have

$$\begin{split} N(x^n + y^n = 1) &= \sum_{a+b=1} N(x^n = a) N(x^n = b) = \sum_{a+b=1} \sum_{i=0}^{d-1} \chi^i(a) \sum_{j=0}^{d-1} \chi^j(b) = \sum_{i=0}^{d-1} \sum_{j=0}^{d-1} J(\chi^i, \chi^j) \\ &= J(\epsilon, \epsilon) + \sum_{i=0}^{d-1} J(\epsilon, \chi^i) + \sum_{i=1}^{d-1} J(\chi^i, \epsilon) + \sum_{i=1}^{d-1} J(\chi^i, \chi^{-i}) + \sum_{i,j \neq 0, i+j \neq 0} J(\chi^i, \chi^j) \\ &= p + (-\chi(-1))(p-1) + \sum_{i,j \neq 0, i+j \neq 0} \frac{g_1(\chi^i)g_1(\chi^j)}{g_1(\chi^{i+j})}. \end{split}$$

As a result,

$$|N(x^n + y^n = 1) - p + \chi(-1)(p - 1)| \le (d^2 - 3d + 2)\sqrt{p}.$$

Applications. When n=2, take $\chi=\left(\frac{\cdot}{n}\right)$. Then

$$N(x^2 + y^2 = 1) = p - (-1)^{\frac{p-1}{2}}.$$

When n = 3, take χ that has order 3. Then

$$N(x^3 + y^3 = 1) = p - 2\chi(-1) + J(\chi, \chi) + \overline{J(\chi, \chi)}$$

Because $\chi^3(-1) = \chi^2(-1) = 1$,

$$|N(x^n + y^n = 1) - p + 2| \le 2\sqrt{p}$$
.

Proposition 4.7. If $p \equiv 1 \pmod{4}$, then there exists a unique integer A and B s.t. $A^2 + B^2 = p$, up to sign.

Proof. Existence. Since $p \equiv 1 \pmod{4}$, we can construct a character χ of order 4 by assigning the value of a primitive root g to i, $\chi(g) = i$.

Consider $J(\chi,\chi) = \sum_{a+b=1} \chi(a)\chi(b) \in \mathbb{Z}[i]$, we have

$$|J(\chi,\chi)| = \frac{\sqrt{p}\sqrt{p}}{\sqrt{p}} = \sqrt{p}.$$

Let $J(\chi, \chi) = A + Bi$, then $A^2 + B^2 = p$.

Uniqueness. Suppose that $A^2 + B^2 = C^2 + D^2 = p$. We know $U(\mathbb{Z}[i]) = \{\pm 1, \pm i\}$ and $\mathbb{Z}[i]$ is a Euclidean domain and thus a UFD. It suffices to prove that A + Bi is irreducible. Suppose that A + Bi = (a + bi)(c + di) and $a + bi, c + di \notin \mathbb{Z}[i]$. But $p = A^2 + B^2 = (a^2 + b^2)(c^2 + d^2)$. A contradiction.

Proposition 4.8. If $p \equiv 1 \pmod{3}$, then there are integers A and B s.t. $p = A^2 - AB + B^2$.

Proof. Take $\chi: \mathbb{F}_p^{\times} \to \mathbb{C}^{\times}, g \mapsto \omega$. Similarly, $|J(\chi, \chi)| = \sqrt{p}$. Let $J(\chi, \chi) = a + b\omega$ and we have $a^2 - ab + b^2 = p$.

Chapter 5

2025/10/16

Proposition 5.1. Suppose $p \equiv 1 \pmod{3}$. There exists a unique A, B (up to sign) s.t. $A^2 + 27B^2 = 4p$.

Recall that we have proven there exists a, b s.t. $a^2 - ab + b^2 = p$, so it suffices to prove that $4a^2 - 4ab + 4b^2$ can be written as the desired form. Notice that $4a^2 - 4ab + 4b^2 = (2a - b)^2 + 3b^2$, but b might not be divisible by 3.

Lemma 5.2. For $a^2 - ab + b^2 = p$, $p \equiv 1 \pmod{3}$, one of a, b and a - b is divisible by 3.

Proof. If $a \not\equiv 0 \pmod{3}$ and $b \not\equiv 0 \pmod{3}$, then $a^2 \equiv b^2 \equiv 1 \pmod{3}$, so

$$a^2 - ab + b^2 \equiv 2 - ab \equiv p \equiv 1 \pmod{3} \implies ab \equiv \pmod{3} \implies a \equiv b \pmod{3}.$$

Proof of Proposistion 5.1. Since $a^2 - ab + b^2 = (a - b)^2 - (a - b)(-b) + (-b)^2$, we can conclude that there exists a, b s.t. $3 \mid a$ and $a^2 - ab + b^2 = p$. This completes the proof of existence of $A^2 + 27B^2 = p$.

Now for uniqueness. Consider

$$\frac{A^2 + 27B^2}{4} = \frac{A + 3\sqrt{3}iB}{2} \frac{A - 3\sqrt{3}iB}{2},$$

where each component on the right hand side lies in $\mathbb{Q}[\omega]$, with norm equal to p. Given that $A \equiv B \pmod{2}$, we have

$$\frac{A+3\sqrt{3}iB}{2} = \frac{A+3B}{2} + 3\omega B \in \mathbb{Z}[\omega].$$

Since $\mathbb{Z}[\omega]$ is a Euclidean domain, $\frac{A+3\sqrt{3}iB}{2}$ is irreducible. Suppose $A_1^2+27B_1^2=A_2^2+27B_2^2=p$. Then WLOG,

$$\frac{A_1 + 3\sqrt{3}iB_1}{2} \mid \frac{A_2 + 2\sqrt{3}iB_2}{2},$$

or

$$\frac{A_1 + 3\sqrt{3}iB_1}{2}u = \frac{A_2 + 2\sqrt{3}iB_2}{2},$$

where u is a unit. However, we know $U(\mathbb{Z}[\omega])$ contains elements whose norms are equal to 1, so $U(\mathbb{Z}[\omega]) = \{\pm 1, \pm \omega, \pm (1 + \omega)\}.$

If $u = \omega$, we could obtain $A_1 = 3B_2$, and $3 \mid A_1$, so $3 \mid p$, a contradiction. Similarly, we can tell that $-\omega, \pm (1 + \omega)$ is also not possible.

Hence $u = \pm 1$, giving the uniqueness.

Proposition 5.3. If χ is a character of order 3, and $J(\chi,\chi) = a + b\omega$, then $a \equiv -1 \pmod{3}$ and $b \equiv 0 \pmod{3}$.

Proof. Since $\chi \neq \overline{\chi}$,

$$J(\chi,\chi) = \frac{g_1(\chi)g_1(\chi)}{g_1(\chi^2)}.$$

Calculate

$$\overline{g_1(\chi^2)} = \sum_{x=0}^{p-1} \chi^2(x)\zeta_p^x = \sum_{x=0}^{p_{01}} \chi(x)\zeta_p^{-x} = \chi(-1)g_1(\chi) = g_1(\chi),$$

where the last equation is given by the fact that χ has order 3.

Recall $|g_1(\chi)| = \sqrt{p}$, so

$$g_1^3(\chi) = J(\chi, \chi)|g_1(\chi)|^2 = J(\chi, \chi)p \equiv J(\chi, \chi) \pmod{3}.$$

On the other hand,

$$g_1^3(\chi) = \left(\sum_{i=0}^{p-1} \chi(i)\zeta_p^i\right)^3 \equiv \sum_{i=0}^{p-1} (\chi(i))^3 \left(\zeta_p^i\right)^3 = \sum_{i=1}^{p-1} \zeta_p^{3i} = -1 \mod 3\mathbb{Z}[\zeta_p, \omega].$$

So

$$\mathbb{Z}[\omega] \ni J(\chi, \chi) \equiv -1 \mod 3\mathbb{Z}[\zeta_p, \omega],$$

and since $\mathbb{Z}[\omega] \cap_3 \mathbb{Z}[\omega, \zeta_n] = 3\mathbb{Z}[\omega]$, we have $J(\chi, \chi) \equiv -1 \mod 3\mathbb{Z}[\omega]$. It follows that

$$a + b\omega \equiv -1 \mod 3\mathbb{Z}[\omega] \implies a \equiv -1 \pmod 3 \quad b \equiv 0 \pmod 3.$$

Corollary 5.4. $N(x^2 + y^2 = 1) = p - 2 + A$, where A is the unique positive solution of $A^2 + 27B^2 = 4p$.

Proof. Calculate

$$N(x^{2} + y^{2} = 1) = \sum_{i=0}^{2} \sum_{j=0}^{2} J(\chi^{i}, \chi^{j})$$

$$= J(\epsilon, \epsilon) + 2J(\chi, \epsilon) + 2J(\chi^{2}, \epsilon) + 2J(\chi, \chi^{2}) + J(\chi, \chi) + J(\chi^{2}, \chi^{2})$$

$$= p - 2 + J(\chi, \chi) + J(\chi^{2}, \chi^{2}) = p - 2 + 2\operatorname{Re}(J(\chi, \chi))$$

$$= p - 2 + (2a - b).$$

Since $|2J(\chi,\chi)|^2=4p^2=(2a-b)^2+3b^2=(2a-b)^2+27b'^2$, where the last equation is because $b\equiv 0\pmod 3$, from the uniqueness of $A^2+27B^2=4p$, 2a-b=A up to sign.

5.1 Finite Fields

Known. For prime p, \mathbb{F}_p^{\times} is cyclic. We claim that any finite field is of the form \mathbb{F}_{p^r} , which is a field extension of \mathbb{F}_p for some p, especially of order p^r .

Theorem 5.5. \mathbb{F}_q^{\times} is cyclic.

5.1. FINITE FIELDS 27

Proof. For $\alpha \in \mathbb{F}_q^{\times}$, let d be the smallest positive integer s.t. $\alpha^d = 1$, and call d the order of α . $\alpha^{p-1} = 1$. Let $\psi(d) := \#\{\alpha \in \mathbb{F}_q \mid \alpha \text{ has order } d\}$. Then $p^r - 1 = \sum_{d \mid p^r - 1} \psi(d)$ and

$$\sum_{d' \mid d} \psi(d') = \#\{\alpha \mid \alpha^d - 1 = 0\} = 0.$$

By Möbius inversion,

$$\psi(d) = \sum_{d' \mid d} d' \mu\left(\frac{d}{d'}\right) = \phi(d).$$

Hence $\psi(p^r - 1) = 0$, there exists a primitive root of \mathbb{F}_q^{\times} , and it is cyclic.

We are interested in considering the finite extensions of \mathbb{F}_p , or $\mathbb{F}_q = \mathbb{F}_p(\alpha)$. To prove that each finite field is isomorphic to some \mathbb{F}_{p^r} , and we are going to achieve this goal by the following three steps.

- 1. $\mathbb{F}_{p^r} = \{x \in \overline{\mathbb{F}}_p \mid x^{p^r} x = 0\}$ is a field.
- 2. Any finite field F, there exists p s.t. pF = 0.
- 3. F is some algebraic extension of \mathbb{F}_p , i.e. $F = \mathbb{F}_p[\alpha_1, \dots, \alpha_i]$, so we can embed F into $\overline{\mathbb{F}}_p$ with map $\phi : F \hookrightarrow \overline{\mathbb{F}}_p$. As $\phi(F) \subseteq \mathbb{F}_{p^r}$ and they have the same size as sets, $\phi(F) = \mathbb{F}_{p^r}$. Hence $|F| = p^r$ and all such F is isomorphic.

Proposition 5.6. General finite field F contains \mathbb{F}_p for some p.

Proof. $1 \in F$. Take m be the minimal positive integer s.t. $m \cdot 1 = 0$. Prove m = p for some p. Suppose otherwise, $m = m_1 m_2$. This leads to $m_1 \cdot 1 = 0$ or $m_2 \cdot 1 = 0$, contradictory to the minimality of m. Hence we have $\mathbb{F}_p = \{0, 1, \ldots, p-1\} \subseteq F$.

Remark. p in the previous proof is called the *character* of \mathbb{F} .

Proposition 5.7. The previously defined \mathbb{F}_{p^r} is a field.

Proof. For $\alpha, \beta \in \mathbb{F}_{n^r}$,

$$(\alpha + \beta)^{p^r} - (\alpha + \beta) = \alpha^{p^r} + \beta^{p^r} - \alpha - \beta = 0$$
$$(\alpha \beta)^{p^r} - \alpha \beta = \alpha \beta - \alpha \beta = 0$$
$$\left(\frac{1}{\alpha}\right)^{p^r} - \frac{1}{\alpha} = \frac{1}{\alpha} - \frac{1}{\alpha} = 0.$$

Proposition 5.8. Any $\mathbb{F}_{p^r} \subset \mathbb{F}_{p^s}$ iff $r \mid s$.

Proof. " \iff ".

$$\mathbb{F}_{p^r} \subseteq \mathbb{F}_{p^s} \iff (\forall \alpha \in \overline{\mathbb{F}}_p \text{ s.t. } \alpha^{p^r} - \alpha = 0 \implies \alpha^{p^s} - \alpha = 0)$$

$$" \implies ". \ x^{p^r} - x \mid x^{p^s} - x \iff x^{p^r - 1} - 1 \mid x^{p^s - 1} - 1 \iff p^r - 1 \mid p^s - 1 \iff r \mid s.$$

Corollary 5.9. For any p^r , there exists a finite field F s.t. $|F| = p^r$.

Proof. Take $F = \{x \in \overline{\mathbb{F}}_p \mid x^{p^r} - x = 0\}$. Since $(x^{p^r} - x)' = -1 \neq 0$, the polynomal has no multiple roots and hence $|F| = p^r$.

Proposition 5.10. Any irreducible polynomial $f \in \mathbb{F}_p[x]$ of degree d divides $x^{p^d} - x$.

Proof. Take α be a root of f in $\overline{\mathbb{F}}_p$. We know $\mathbb{F}_p[\alpha]| = p^d$, so $\mathbb{F}_p \cong \mathbb{F}_{p^d}$, and $\alpha^{p^d} - \alpha = 0$. On the other hand, f is irreducible, so it is the minimal polynomial of α . $f \mid x^{p^d} - x$.

Corollary 5.11. Any irreducible polynomial $f \in \mathbb{F}_p[x]$ of degree d divides $x^{p^n} - x$ iff $d \mid n$.

Proof. We first prove a lemma.

Lemma 5.12. Any irreducible f of order d' > d, $f \nmid x^{p^d} - x = 0$

Proof. Suppose $f \mid x^{p^d} - x$. Take α a root of f. Then $\alpha^{p^d} - \alpha = 0$, so $\alpha \in \mathbb{F}_{p^d}$. But $|\mathbb{F}_{p^d}| = p^{d'} > p^d = |\mathbb{F}_{p^d}|$, a contradicition to $\alpha \in \mathbb{F}_{p^d}$.

By virtue of the lemma, we are able to prove that any irreducible f of order d', $f \mid x^{p^d} - x$ iff $d' \mid d$.

Theorem 5.13. Let $F_d(x)$ be the product of all distinct irreducible polynomials of degree d in $\mathbb{F}_p[x]$. Then $\forall n \geq 1$ we have

$$\prod_{d|n} F_d(x) = x^{p^n} - x.$$

Proof. Since $\mathbb{F}_p[x]$ is a Euclidean domain, we can write

$$x^{p^n} - x = \prod_{f \text{ irreducible}} f^{e_f} = \prod_{f \text{ irreducible,deg } f \mid n} f.$$

So $f \mid F_d(x)$ for some d and it suffices to prove that $e_f = 1$. Suppose not. Let f_0 be one of f s.t. $e_{f_0} \geq 2$.

$$-1 = (x^{p^n} - x)' = \left(\prod_f f^{e_f}\right)' = (e_{f_0} f_0^{e_f - 1}) \left(\prod_{f \neq f_0} f^{e_f}\right) + \left(\prod_{f \neq f_0} f^{e_f}\right)'.$$

Plugging in α a root of f_0 provides a contradiction.

Let T_d be the number of irreducible polynomial of degree d in \mathbb{F} . From $\deg(F_d) = T_d d$, we have $\sum_{d|n} T_d d = p^n$. By Möbius inversion,

$$T_n = \frac{1}{n} \sum_{d|n} \mu\left(\frac{n}{d}\right) p^d.$$

We turn to examine the equations in finite fields.

Theorem 5.14 (Chevally's theorem). If $F = \mathbb{F}_q$, $q = p^r$, let $f(x) \in \mathbb{F}[x] := F[x_1, \dots, x_n]$. Suppose

1.
$$F(0) = 0$$
.

2.
$$n > \deg f := \max_{i \in I} \{i_1 + \dots + i_n\} = d$$
, where $f = \sum_{i \in I} c_i x_1^{i_1} \cdots x_n^{i_n}$

Then f has at least q roots in $\mathbb{A}^n(F) = \{(x_1, \dots, x_n) \in F^n\}.$

Proof. Take $N_f := \sum_{\underline{a} \in \mathbb{A}^n(F)} (1 - f(\underline{a})^{q-1})$ is the number of roots of f. Then it is enough to show $q \mid N_f$.

 $\deg f = d$, $\deg f^{q-1} = d(q-1)$. $f^{q-1} = \sum_{\underline{j} \in I} c_{\underline{j}} x_1^{j_1} \cdots x_n^{j_n}$. For any $\underline{j} \in I$, at least one of $i \in \{1, \dots, n\}$ satisfies $j_i < q-1$. Fix other items and let x_i runs through F.

Lemma 5.15.

$$\sum_{x \in F} x^i = \begin{cases} |F| - 1, & q - 1 \mid i, i \neq 0, \\ |F|, & i = 0, \\ 0, & q - 1 \nmid i. \end{cases}$$

So $q \mid \sum_{\underline{a} \in F^n} c_{\underline{i}} x_1^{j_1} \cdots x_n^{j_n}$ and hence

$$q \mid \sum_{a \in F^n} f(\underline{a})^{q-1} \implies q \mid N_f \implies N_f \ge q.$$

More generally, we have the following theorem.

Theorem 5.16 (Ax, Katz). Let $f_1, \ldots, f_r \in F[x_1, \ldots, x_n]$ be polynomials of degree $d_i \geq 1$. Suppose $\sum_{i=1}^r d_i < n$, then let $M_f = \left\lceil \frac{n - \sum_{i=1}^r d_i}{\max_{1 \leq i \leq r} d_i} \right\rceil$. Then $N_f := \{\underline{x} \in \mathbb{A}_{F^n} \mid f_i(\underline{x}) = 0\}$ satisfies $q^{M_f} \mid N_f$.

5.2 Hasse-Weil Zeta Function

Definition 5.1. Define a variety X over \mathbb{F}_q by $X:=\{(x_1,\ldots,x_n)\in\overline{\mathbb{F}}_p\mid f_i(\underline{x})=0,1\leq i\leq r\}.$ And $X(\mathbb{F}_{q^m}):=\{(x_1,\ldots,x_n)\in\mathbb{F}_{q^m}\mid f_1(\underline{x})=\cdots=f_r(\underline{x})=0\}$

Definition 5.2. If $N_m(X) := \#X(\mathbb{F}_{p^m})$, then the *Hasse-Weil zeta function* is defined to be

$$Z(X,t) := \exp \sum_{m \ge 1} \frac{N_m(X)}{m} t^m \in \mathbb{Q}[[t]].$$

Example. $X = \mathbb{A}^n_{F_p}, |X(\mathbb{F}_{p^m})| = |N_m(X)| = p^{mn}.$

$$Z(\mathbb{A}^n_{\mathbb{F}_p}) = \exp\left(\sum_{m \ge 1} \frac{p^{mn}}{m} t^m\right) = e^{-\ln(1-p^n t)} = \frac{1}{1-p^n t}.$$

Definition 5.3. Define $\mathbb{P}^n_{\mathbb{F}_p} := (\mathbb{A}^{n+1}_{\mathbb{F}_p} \setminus \{0\}) / \sim$, where \sim is defined by

$$(a_1,\ldots,a_{n+1}) \sim (b_1,\ldots,b_{n+1}) \iff \exists 0 \neq c \in \mathbb{F}_p \text{ s.t. } a_i c = b_i.$$

Example. Calculate

$$N_m(\mathbb{P}^n_{\mathbb{F}_p}) = \frac{p^{(n+1)m} - 1}{n^m - 1}.$$

And

$$Z(\mathbb{P}^n_{\mathbb{F}_p}) = \exp\left(\sum_{m=1}^{\infty} \frac{p^{(n+1)m}-1}{m(p^m-1)} t^m\right) = \frac{1}{1-t} \cdots \frac{1}{1-p^n t}.$$

L'algèbre n'est qu'une géométrie écrite; la géometrie n'est qu'une algèbre figurée.

Chapter 6

2025/10/23

6.1 Hasse-Weil zeta function

Last time we defined the function locally over \mathbb{F}_p , where

$$Z(X,T) := \exp\left(\sum_{m=1}^{\infty} \frac{N_m(x)}{m} T^m\right).$$

Theorem 6.1 (Weil conjecture). Let X be a smooth projective variety over \mathbb{F}_p .

- 1. (Rationality). $Z(X,s) = \frac{P(T)}{Q(T)} \in \mathbb{Q}(T)$.
- 2. (Functional equation). $Z\left(X, \frac{1}{p^nT}\right) = \pm p^{\dim XE/2}T^EZ(X,T)$, where E is the Euler characteristic number of X.
- 3. $Z(X,T) = \frac{P_1(T)\cdots P_{2n-1}(T)}{P_0(T)\cdots P_{2n}(T)}$, where $P_i \in \mathbb{Z}[T]$. If we write $P_i(T) = \prod_j (1-\alpha_{ij}T)$ with $a_{ij} \in \mathbb{C}$, then $|a_{ij}| = p^{\frac{i}{2}}$.

Remark (Special case). If $f \in \mathbb{F}_p[\underline{x}]$ is a homogenous polynomial of degree d, take the hypersurface defined by f.

$$H_f := \{ \underline{x} \in \overline{F}_p \mid f(\underline{x}) = 0 \}.$$

Then dim $H_f = n - 1$, and

$$Z(H_f, T) = \frac{PT^{(-1)^n}}{(1 - T) \cdots (1 - p^{n-1}T)}.$$

where roots has norm $p^{\frac{n-1}{2}}$ pure of weight n-1. deg $P(T) = d^{-1}((d-1)^{n+1} + (-1)^{n+1}(d-1))$.

Definition 6.1 (Global version). Let K be a number field.

$$Z(V,S) := \prod_{\mathfrak{p} \text{ prime ideal in } O_k} Z(V_{\mathfrak{p}}, |N(\mathfrak{p})|^s),$$

where $N(\mathfrak{p})$ the norm of \mathfrak{p} as prime ideal and

$$V_{\mathfrak{p}} = \{\underline{x} \in \overline{\mathbb{F}}_p \mid f_1 \mod p, \dots, f_m \mod p\}^1.$$

¹only when $V_{\mathfrak{p}}$ has good reduction

Example (Riemann zeta function).

$$\sum_{n=1}^{\infty} \frac{1}{n^s} = Z(\operatorname{spec}(\mathbb{Z}), p^{-s}) = \sum_{p \text{ prime}} \left(1 - \frac{1}{p^s}\right)^{-1}.$$

In the following we will mostly be concerned with the Riemann zeta function and its generalization, the L function.

Lemma 6.2.

$$\sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p} \left(1 - \frac{1}{p^s} \right)^{-1} \right) = \prod_{p} \left(\sum_{k=0}^{\infty} \frac{1}{p^{sk}} \right).$$

Proof. Fix s. For N, consider primes p < N.

$$\sum_{n=1}^{N} \frac{1}{n^s} < \prod_{p < N} \left(\sum_{k=0}^{\infty} \frac{1}{p^{ks}} \right) < \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

By squeeze lemma, we complete the proof.

We denote the Riemann zeta function by

$$\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s},$$

and $\left(1 - \frac{1}{p^s}\right)^{-1}$ the Euler factor of $\zeta(s)$.

We would like to find the meromorphic extension of $f(s) := \sum_{n=1}^{\infty} \frac{1}{n^s}$ to \mathbb{C} . Known f(s) is defined for Re(s) > 1, and

$$\left(1 - \frac{2}{2^s}\right)f(s) = \frac{1}{1^s} - \frac{1}{2^s} + \frac{1}{3^s} + \dots = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^s}$$

is defined for Re(s) > 0 (Dirichlet criterion). Define

$$f(s) := \frac{\sum \frac{(-1)^n}{n^s}}{1 - \frac{2}{2^s}}.$$

WTS f(s) has a unique pole at s=1, which is simple. Zeros of $1-\frac{2}{2^s}=0$ are $s=1-\frac{2\pi ni}{2\ln 2}$, $n\in\mathbb{Z}$. But the nominator may be zero, so we consider another extension. Since if F_1 and F_2 are the meromorphic extension of f over Re(s)>0, then $F_1=F_2$, we consider

$$f_2 = \left(1 - \frac{3}{3^s}\right) \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} - \frac{2}{3^s} + \cdots$$

which converges over Re(s) > 0. Define $F_2 = \frac{f_2}{1 - \frac{3}{3^s}}$. The possible pole points $s = 1 - \frac{2\pi ni}{\ln 3}$ for $n \in \mathbb{Z}$. Note

$$\left\{1-\frac{2\pi ni}{\ln 3}\mid n\in\mathbb{Z}\right\}\cap\left\{1-\frac{2\pi ni}{\ln 2}\mid n\in\mathbb{Z}\right\}=1$$

as $\frac{\ln 2}{\ln 3}$ irrational. Hence

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

can be extended to Re(s) > 0. In the strip 0 < Re(s) < 1, we have

$$\zeta(s) = 2^s \pi^{s-1} \sin\left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s).$$

By means of this functional equation, we can in fact extend $\zeta(s)$ to the whole plane \mathbb{C} .

Known $\zeta(s) = \frac{a}{s-1} + \eta(s)$ around s = 1, where $\eta(s)$ is analytic. We would like to determine a.

Lemma 6.3.

$$\lim_{\mathbb{R}\ni s\to 1^+} \zeta(s)(s-1) = 1$$

Proof.

$$\frac{1}{n^s} < \int_{n-1}^n t^{-s} \mathrm{d}t < \frac{1}{(n-1)^s}.$$

Hence after summation

$$\sum_{n=2}^{\infty}\frac{1}{n^s}<\int_{2}^{\infty}\frac{1}{t^s}\mathrm{d}t<\sum_{n=1}^{\infty}\frac{1}{n^s},$$

where

$$\int_{2}^{\infty} \frac{1}{t^{s}} \mathrm{d}t = \left. -\frac{1}{s-1} \frac{1}{t^{s-1}} \right|_{2}^{\infty} = \frac{1}{s-1} \frac{1}{2^{s-1}}.$$

Hence we have $(s-1)\zeta(s) - (s-1) = (s-1)\sum_{n=2}^{\infty} \frac{1}{n^s} < \frac{1}{2^{s-1}}$ and $(s-1)\zeta(s) > \frac{1}{2^{s-1}}$. By squeeze lemma, we have

$$\lim_{s \to 1^+} (s-1)\zeta(s) = 1.$$

6.2 Dirichlet density theorem

Definition 6.2. A set of positive prime \mathcal{P} is said to have *Dirichlet density* if

$$d(\mathcal{P}) := \lim_{s \to 1^+} \frac{\sum_{p \in \mathcal{P}} \frac{1}{p^s}}{\ln\left(\frac{1}{s-1}\right)}$$

exists.

Proposition 6.4. 1. If \mathcal{P} is finite, then $d(\mathcal{P}) = 0$.

2. If $\mathcal{P} = \{\text{primes}\} \setminus \{\text{finite ptimes}\}, \text{ then } d(\mathcal{P}) = 1.$

Proof. 1. The nominator is finite but the divisor tends to infinity.

2. WLOG, let $\mathcal{P} = \{\text{primes}\}$. By a previous lemma,

$$\lim_{s \to 1^+} \frac{\zeta(s)}{\ln\left(\frac{1}{s-1}\right)} = 1.$$

So we only need to consider

$$\sum_{p} \frac{1}{p^{s}} - \ln \zeta(s) = \sum_{p} \frac{1}{p^{s}} - \sum_{p} \sum_{k=1}^{\infty} \frac{1}{kp^{ks}} = \sum_{p} \sum_{k=2}^{\infty} \frac{1}{kp^{ks}}.$$

Moreover

$$\sum_{k=2}^{\infty} \sum_{p} \frac{1}{kp^{ks}} \le \sum_{k=2}^{\infty} \sum_{n=2}^{\infty} \frac{1}{kn^{ks}} \le \sum_{k=2}^{\infty} \frac{1}{k} \left(\frac{2}{2^{ks}} + \frac{4}{4^{ks}} + \cdots \right) = \sum_{k=2}^{\infty} \frac{1}{k} \left(\sum_{l=1}^{\infty} \frac{1}{2^{l(ks-1)}} \right)$$
$$= \sum_{k=2}^{\infty} \frac{1}{k} \frac{1}{2^{ks-1}}$$

is bounded.

Hence $d(\mathcal{P}) = 1$.

Proposition 6.5. There exists \mathcal{P} s.t. $d(\mathcal{P})$ is not defined.

Proof. We know when $s \to 1^+$,

$$\frac{\sum_{p} \frac{1}{p^s}}{\ln\left(\frac{1}{s-1}\right)} \to 1.$$

So there exists s > 1 s.t.

$$\frac{\sum_{p} \frac{1}{p^{s_1}}}{\ln\left(\frac{1}{s_1-1}\right)} > \frac{3}{4}.$$

Further there exists $N_1 > 0$ s.t.

$$\frac{\sum_{p < N_1} \frac{1}{p^{s_1}}}{\ln\left(\frac{1}{s_1 - 1}\right)} > \frac{3}{4}.$$

And for $\epsilon = \frac{1}{8}$, there exists $N_2 > N_1$ s.t.

$$\frac{\sum_{p>N_2} \frac{1}{p^{s_1}}}{\ln\left(\frac{1}{s_1-1}\right)} < \epsilon = \frac{1}{8}$$

We know by the previous proposition,

$$\lim_{s \to 1^+} \frac{\sum_{p < N_1} \frac{1}{p^s}}{\ln\left(\frac{1}{s-1}\right)} = 0.$$

Take $1 < s_2 < s_1$ s.t.

$$\frac{\sum_{p < N_1} \frac{1}{p^{s_2}}}{\ln\left(\frac{1}{s_2 - 1}\right)} < \frac{1}{8}$$

And $N_3 > N_2$ s.t.

$$\frac{\sum_{N_2 \le p \le N_3} \frac{1}{p^{s_2}}}{\ln\left(\frac{1}{s_2 - 1}\right)} < \frac{1}{4}$$

Continue this process, to get a series of N_1, N_2, N_3, \ldots and s_1, s_2, s_3, \ldots such that when $s = s_k$, the predominant component in the original summation

$$\frac{\sum_{p} \frac{1}{p^s}}{\ln\left(\frac{1}{s-1}\right)}$$

is those satisfying $p \in [N_{2i-1}, N_{2i}]$. Take $\mathcal{P} = \{p \mid p \in [N_{2k-1}, N_{2k}], k \in \mathbb{Z}$, and then according to the process, the sum will be around $\frac{3}{4}$ when $s = s_{2k-1}$ and around $\frac{1}{4}$ when $s = s_{2k}$. Hence it converges not.

Definition 6.3. If we have $\chi: (\mathbb{Z}/n\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$, define the *Dirichlet character*

$$\chi: \mathbb{Z} \to \mathbb{C}^{\times}$$

$$n \mapsto \begin{cases} \chi(\overline{n}), & \gcd(m, n) = 1\\ 0, & \gcd(m, n) \neq 1. \end{cases}$$

Proposition 6.6. 1. $\chi(n+mk) = \chi(n), \forall n, k \in \mathbb{Z}$.

- 2. $\chi(nk) = \chi(n)\chi(k)$.
- 3. $\chi(n) \neq 0, \forall \gcd(n, m) = 1.$

For A an abelian group, let $\widehat{A} := \{ \chi : A \to \mathbb{C}^{\times} \mid \text{group homomorphism} \}.$

Lemma 6.7. \widehat{A} is a group.

Lemma 6.8. Finite abelian group is isomorphic to

$$\bigoplus_{i=1}^{l} (\mathbb{Z}/r_i\mathbb{Z}).$$

In particular, when $r_1 \mid r_2 \mid \cdots \mid r_l$.

Lemma 6.9. $A \cong \widehat{A}$ for finite abelian group.

Proof. Let $A = \left\{g_1^{i_1} \cdots g_n^{i_n} \mid 1 \leq i_j \leq r_j\right\}$, then

$$\widehat{A} = \left\{ \chi : g_i \to \zeta_{r_j}^{s_i} \right\} \cong \bigoplus_{i=1}^l (\mathbb{Z}/r_i\mathbb{Z}).$$

Lemma 6.10. A a finite abelian group, $\chi, \psi \in \widehat{A}$ and n = #A. Then

- 1. $\sum_{a \in A} \chi(a) \overline{\psi(b)} = n\delta(\chi, \delta)$.
- 2. $\sum_{\chi \in \widehat{A}} \chi(a) \overline{\chi(b)} = n\delta(a, b)$.

Corollary 6.11. For χ, ψ Dirichlet characters modulo m, and $a, b \in \mathbb{Z}$,

- 1. $\sum_{a=0}^{m-1} \chi(a) \overline{\chi(a)} = \phi(m) \delta(\chi, \psi).$
- 2. $\sum_{\chi \text{ Dirichlet character}} \chi(a) \overline{\chi(b)} = \delta(a, b) \phi(m)$, where

$$\delta(a,b) = \begin{cases} 1, & a \equiv b \pmod{m} \\ 0, & \text{otherwise.} \end{cases}$$

Definition 6.4. For χ a Dirichlet characteristic modulo m, define the Dirichlet L-function

$$L(\chi, s) := \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s} = \prod_{p} \left(1 - \frac{\chi(p)}{p}\right)^{-1}.$$

Remark. If χ_0 is trivial characteristic, then

$$\zeta(s) = L(\chi_0, s) \prod_{p|m} \left(1 - \frac{1}{p^s}\right)^{-1}$$

Corollary 6.12. If m = 1, then

$$L(\chi_0, s) = \zeta(s)$$

for Re(s) > 1.

Our goal is the following theorem.

Theorem 6.13 (Dirichlet prime density theorem).

$$d(\mathcal{P}_a) = \frac{1}{\phi(m)},$$

where $\mathcal{P}_a = \{ p \equiv a \pmod{m} \mid p \text{ is a prime} \}.$

Definition 6.5.

$$G(\chi, s) := \sum_{p} \sum_{k=1}^{\infty} \frac{\chi(p^k)p^{-sk}}{k} = \ln(L(\chi, s)).$$

It is defined over Re(s) > 1.

Proposition 6.14.

$$\lim_{s \to 1^+} \frac{G(\chi_0, s)}{\ln\left(\frac{1}{s-1}\right)} = 1,$$

and $G(\chi, s)$ is bounded for $\chi \neq \chi_0$.

This proposition leads to the Dirichlet prime density theorem, as

$$\lim_{s \to 1^{+}} \frac{\sum_{\chi} \overline{\chi(a)} G(\chi, s)}{\ln\left(\frac{1}{s-1}\right)} = \lim_{s \to 1^{+}} \frac{\sum_{\chi} \overline{\chi(a)} \sum_{p} \sum_{k=1} \frac{\chi(p^{k}) p^{-sk}}{k}}{\ln\left(\frac{1}{s-1}\right)} = \lim_{s \to 1^{+}} \frac{\sum_{\chi} \overline{\chi(a)} \sum_{p} \chi(p) p^{-s}}{\ln\left(\frac{1}{s-1}\right)}$$
$$= \lim_{s \to 1^{+}} \sum_{p} \sum_{\chi} \frac{\chi\left(\frac{p}{a}\right) p^{-s}}{\ln\left(\frac{1}{s-1}\right)} = \lim_{s \to 1^{+}} \sum_{p, p \equiv a \pmod{m}} \frac{\phi(m) p^{-s}}{\ln\left(\frac{1}{1-s}\right)} = 1.$$

Proof of Proposition 6.14. Since $L(\chi_0, s) = \zeta(s) / \prod_{p|m} \left(1 - \frac{1}{p^s}\right)^{-1}$, and

$$\lim_{s \to 1^+} \frac{\ln \zeta(s)}{\ln \left(\frac{1}{s-1}\right)} = 1$$

we indeed have

$$\lim_{s\to 1^+}\frac{\ln L(\chi_0,s)}{\ln\frac{1}{s-1}}=1.$$

Lemma 6.15. For $\chi \neq \chi_0$, $L\chi$, s) has an extension to an analytic function on Re(s) > 0.

Take $F(s) := \exp\left(\sum_{\chi} G(\chi, s)\right) = \prod_{\chi} L(\chi, s)$. Then for real s > 1, we have $F(s) \ge 1$. as

$$F(s) = \exp\left(\sum_{\chi} \sum_{p,k \geq 1} \frac{\chi(p^k)p^{-sk}}{k}\right) = \exp\left(\sum_{p,k,p^k \equiv 1 \pmod{m}} \frac{\phi(m)p^{-sk}}{k}\right) \geq 1,$$

where the last equality is from

$$\sum_{\chi} \chi(a) = \begin{cases} \phi(m), & a \equiv 1 \pmod{m} \\ 0, & a \not\equiv 1 \pmod{m}. \end{cases}$$

Proposition 6.16 (Complex χ). If χ is complex, i.e., $\{\chi(a) \mid a \in \mathbb{Z}\} \not\subseteq \mathbb{R}$ If χ is a complex characteristic modulo m, then $L(\chi, 1) \neq 0$.