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Chapter 1

2025/9/11

Office Hour: Friday 4:00 p.m. — 5:00 p.m. Homework hand in before class.

1.1 Unique Factorization in Rings

Theorem 1.1. Any integer n can be written of the form

n) - - -1, n<0,
n= (_1)8( )pll Pms 6(n) - {0 n>0

where p; are prime numbers.

Proof. Ezistence. WLOG, n > 0. n = 1 is trivial. Suppose that the factorization works for
any m < n — 1. If n is prime number, OK. If n is not a prime, then Jprimep < n s.t. p | n.

n = pni1,n1 < n. By induction, ny = pi* ---pim, and n = ppi* - - pim.

Uniqueness. If n = pi*---pim = qil <-gls. 91 < i < s, s.t. p1 = ¢;. By induction, the

factorization of & is same to 2. O
P1 D1
The goal of the course is to generalize this property to general rings.

Definition 1.1. Let R be an integeral domain if ab=0 = a=0or b =0.
We call p € R irreducible if ab=p = a is a unit or b is a unit.
We call p a prime if p # 0 and p # unit and p | ab = p|aor p|b.

We ask when primes are always irreducibles and when irreducibles are always primes.
Proposition 1.2. prime = irreducible.

Proof. For a prime p, assume p = ab, so p | ab and hence p | a or p | b. Suppose p | a, then
Jec € R s.t. pc = a. We have pcb = p, and p(cb — 1) = 0. Since p is prime, p # 0. Since R is an
integral domain, cb = 1 and thus b is a unit. O

The converse is not true for general integral doamin.
Definition 1.2. If any a € R can be uniquely factored into the form
a=py" Py

with p; being prime, then we call R uniquely factorization domain.
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A natural consequence is that irreducibles are always primes.
Proposition 1.3. irreducible = prime.
Proof. If p is irreducible, 3 a factorization p = up' - - - pi™ = p1b = py - unit. So p is a prime. O

Definition 1.3. If any ideal I of R is principal, i.e., I = (a) for some a € R, then R is a principal
ideal domain.

An easy fact is that Z is a PID. We would like to prove that for PIDs, irreducibles are primes
and further prove that PID C UFD.

’Assume R is a PID. ‘ d € R is called “the greatest common divisor” of a and b if it satisfies:

e d|aandd|b.

e forany d' | a and d' | b, we have d’ | d.
Lemma 1.4. If d,d’ are both g.c.d. of a and b, then d = ud’ﬂ, for some unit w.

Proof. Since d | d' | d, then Ja,b € R s.t. ad = d' and bd’ = d, so abd = d. Tt implies that ab =1
and hence d’ = ad where a is unit. O

Proposition 1.5. Any a,b € R have a g.c.d. d and (d) = (a, b) as ideals. (Under the assumption
that R is a PID, and so are the results below.)

Proof. Since R is PID, we have (a,b) = (d) for some d, and hence d | a, d | b. For any d’ | a and
d' | b, and since there exist s,t such that d = sa + tb, we have d’ | d. By definition, d is g.c.d. of
a and b. 0

Corollary 1.6. If a,b are coprime (i.e. their g.c.d. is 1) in R, then (a,b) = R.
Proposition 1.7. If R is PID, irreducible = prime.

Proof. For any irreducible p € R, suppose that p | ab and pt a, then let d = ged(p,a). d | p =
Je€ Rst. p=cd. If disnotaunit,d=p = p|a. A contradiction. Hence d is a unit and
a,p are coprime. There exists s,t € R s.t. as+tp =1. abs + tpb = b and since p | ab and p | p,
we have p | b. p is prime. O

Lemma 1.8. For any m € R, there exists irreducible element b € R s.t. b | m.

Proof. Suppose m irreducible. Trivial.
Suppose m reducible. 3 non-units a1,b; € R s.t. a;b; = m. Apparently, if this lemma fails,
then we obtain infinitely many reducibles {a;} s.t. (a;) C (a;—1) since

a; = ai+1bi+1 (1.1)

. Consider -
U (ai)a
i=1
which is an ideal of R. R is a PID, so there exists b € R s.t.

(0) = J(a).
i=1
But In s.t. b= (a,) and (an4m) = (a,) for any m > 1, a contradiction to (EI) O

1Call such d and d’ associate.
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Theorem 1.9. PID C UFD.

Proof. For any a € R, 3 irreducible by, which is also prime, s.t. a = bja;. And we have
a1 = boas = a = bibyas. If has to stop at some n by the argument of the previous lemma.
We thus reach the conclusion that a = b1bs - - - b, with b; being prime. O

Definition 1.4. We call R a Noetherian domain if any chain of ideals is stable, i.e., for
LCLCl;C---

dn s.t. I, = I, for any m > n.

Proposition 1.10. The above definition is equivalent to any ideal being finitely generated.

Proof. “ = ". Suppose 31 is not f.g., any a; € I, Jag s.t. as ¢ (a1). I # (a1,a2) 2 [, —
Jaz € Is.t. az ¢ (a1,az). I3 £ (a1, a2, a3). The process goes on and we obtain I; C Io C I3 C ---.
A contradicition to the original defintion.

“<=" Forany I C I, C---. We know [ £ Ufil I; is an ideal of R, so daq,...,am € Iy
st. Ip = (a1,...,qm;). Then Ins.t. o; € I, for any i € {1,...,m}. It follows that I,, = Ip = I,
for any m > n, and I, C I,,, C Iy = I,. O

Question: What is the relation between Noetherian domains and UFDs?
Take K|x,y,2]/(z? — yz).

Proposition 1.11. If R is Noetherian, then R|[x] is Noetherian.

Proof. For I an ideal in R, take Iy = {f, : f € I}, where f, is the leading coefficient of f. Then
If1, .oy fs st (fias---s fsa) = Lo. We can only consider f € I s.t. deg(f) < max{fi,...,fs}—
1 £ m. Consider I} = {f, : deg(f) = m}, which is f.g. And further consider f with smaller
degrees. O

Then Klz,y,z2]/(z? — yz) is Noetherian, but z | 22 = yz yet x { y,z 1 2, so this ring is not
UFD. For the converse, consider R = C[z1, 3, . ..] which is not Noetherian, but a UFD.

Definition 1.5. We call R a Fuclidean domain if there is a function
A: R\ {0} = {0,1,...}
s.t. for any a,b € R, b # 0, there exists ¢,d € R, s.t. a =bc+d for d =0 or A(d) < A(D).
Example. Z is Eucildean domain, since we can have A\(n) = |n|.
Proposition 1.12. Eucildean domain = PID.

Proof. Suppose R is a ED. For any ideal I of R let n be min{A(a) | @ € T\ {0}}. Leta € I
s.t. A(a) = n. Then (a) = I, else we have b € I\ (a), b = sa + r with A(r) < A(a), which is
impossible. O

Example (Non-example). R =7 [%ﬂ] is PID but not ED.
Example. Some examples of ED.

o k[z], k is a field, A(f) £ deg(f).

o kll2]ll, A(f) = {n: am # O}
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o k(z) & {f € k[[]] : lim;_, a; = 0}, where k satisfies strong triangluar inequalitya, with

Af)={i:a; #0}.
Proposition 1.13. Z[i] is ED with A(a + bi) = a® + b2.

Proof. For ¢ + diya + bi # 0, WTS 3s,r s.t. s(a+ bi) +r = ¢+ di, A(s) < Ma + bi). Let

Zi% =a+pi € R+Ri. Imn € Zst. |m—al < %, n — 8] < % Consider ¢ + di =

(@ + bi)(m + ni) + A+ Bi. Then

a+ Bi— (m+ni)= iii_i,
S0
A(A + Bi) = Ma + bi)A((a — m) + (8 — n)i) < Aa + bi). O

Remark. Z[w] is a Euclidean domain with A(a + bw) = a® + b® + ab, where w = _1%‘/_73 The
proof is the same as above.

Proposition 1.14 (Application of Unique Factorization). In Z, there are infinitely many prime
numbers.

Proof. Suppose p1,...,pn are all the primes of Z. Consider p; - - - p,, + 1. Since Z is UFD,
pl...pm_i'_l:pql...p;;n.

We must have r; =0, p1 -+ p, + 1 = 1. A contradicition. O

1.2 Mobius Function

Definition 1.6. The Mobius function p is defined as

1, n=1,
p(n) £ <0, n is not square free,
(=1)™, n=p1--pp for p; # p; with i # j.

Proposition 1.15. If n > 1,

> u(d) =o.
d|n
Proof. Let n=[[.", p;*. Then

dould)= Y pd+ D pd+ D p(d)

d|n d|n,p1]|d d|n,p?|d d|n,p1td
= > wd(=1)+ > uld)=0. O
d| d| ¢

n
T T
:D11 Pll

2In a field k with norm, the strong triangluar inequality is the following.
ja+ b| < max{al, [b[}.

Some examples include p-adic integers Zp, with |52 a;p’| = p~ min{i:a;#0}
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Theorem 2.1 (M&bius Inversion Theorem). If F'(n) =3, f(d), then
n
fn) = ;u (%) Fla).

Remark. Notation: For f,g:7Z>o — R,
n
fogn) =Y @9 (%)
d|n

Then the theorem is equivalent to po F'= o fo .

Proof. We have
pofop=fo(nop)=fodn=Ff O

Definition 2.1. The following function is called Euler function.
¢p(n) =#{l<a<n|(an)=1}.
Lemma 2.2. ¢(mn) = ¢(m)d(n) if ged(m,n) = 1.
Proof. The following map is an isomorphism.
U(mn) — U(m) x U(n)
a+— (a mod m,a mod n). O
Theorem 2.3. ¢ o p(n) =n.

Proof. If n = 1, trivial. Suppose that for n > 1, this result holds for any m < n — 1. Write
n=
If n=p,

> o(d) =od(p) +¢(1) =p—1+1=p.

d|p

Else, n = pym, m > 2.

Yo=Y dd+ Y ed= Y sd+ Y ¢<d>:¢(pzl>%+ﬁ:n. 0

d|n din,pit|d dn,pittd d|n/p7t d|n/p1

7
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2.1 Congruence

Notation: m € Z>1. a,b € Z. For a,b € Z, it m | a — b, then we put a = b (mod m).
Proposition 2.4. 1. a =a (mod m).

2. a =b (mod m), then b = a (mod m).

3. a=b (mod m), b=c (mod m), then a = ¢ (mod m).

Thus = is an equivalent relation.

Definition 2.2. Fix m € Z>,. Put a:={a+km |k € Z} = a+mZ. Call @ a congruence class
modulo m.

Proposition 2.5. 1. a=biff a =b (mod m).
2.a=>biffa% (modm)ifanb=g.
3. There are precisely m congruence classes modulo m, namely 0,1,...,m — 1.
Definition 2.3. Map
m L — Z/mZ
a—a+mZ
is a ring homomorphism.

We often write ~ := ~,. B
For any f(z) = Zlezg arz’, we put f = Z[ezg ayz! € Z/mZz). The number of solutions
0 >0

of f(z) = 0 modulo m is the number of
(b1,...,bn) € (Z/mZ)"
s.t. ?(bl, ey bn) =0.

Definition 2.4. ax = b (mod m) has solution iff gcd(a, m) | b. If it has solution, the number of
solutions is equal to ged(a, m).

Proof. Let d := ged(a,m). “ <= " ax = b (modm) <= %z = % (mod 2). Since
ged (%, %) =1,3s,t € Zs.t. s§+1t"% =1 and hence
a b b m
22 =% (moa ™.
g%q=q wed )
“ = 7. Suppose for some z, ax =b (mod m), Ik € Z, ax — b =km. d | ax — km = b.
For the second part, since 3s,t € Z s.t. s§ = 1 (mod %), x = gs (mod ). Hence
{z+2i:i=0,1,...,d — 1} is the set of solution of ax = b (mod m). O

Corollary 2.6. If gcd(a,m) = 1, then az = b (mod m) has unique solution.
Corollary 2.7. ax = b (mod p), where a Z 0 (mod p) has unique solution.
Proposition 2.8. An element @ in Z/mZ is a unit iff ged(a,m) = 1.

Proof. @ is a unit iff ax =1 (mod m) has solution iff ged(a, m) | 1 iff ged(a, m) = 1. O
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As a result, there are exactly ¢(m) units in Z/mZ.
Proposition 2.9. Z/mZ is a field iff m = p.

Proof. If m = p, by the above corollary.
Otherwise m = mims, with mq,mo > 2, known myms = 0 but my; # Omg # 0. It follows
that Ty, Tz are zero divisors. Z/mZ is not an ID hence not a field. O

Corollary 2.10 (Euler’s Theorem). If (a,m) = 1, then
a®™ =1 (mod m).
Define U(Z/mZ) := {a € Z/mZ | 3b,ab = 1} is a group under x.
Proof. a#V(\Z/mZ) — T, O
Theorem 2.11 (Fermat’s little theorem). ged(a,p) =1 = a?~! =1 (mod p).
Proposition 2.12 (Wilson’s theorem).
(p—1)!I=-1 (mod p).

Proof. For any a # 1,p—1,a € {1,...,p— 1}, I # a s.t. ab =1 (mod p). Make a pairing

(a,0(a)),... in the above way with pg?’ pairs. Then
p—3
2
(p—l)!51~(p—l)ZaiU(ai)E—l (mod p). O
i=1

Generalization. Suppose R is a PID. For any a,b,m € R, ax = b (mod m) has solution iff
b € (a,m), i.e. ged(a,m) | b. The number of solutions can be infinite, as in R = C[t],

(t—a)xr=0 (mod (t—a)(t—0b))
has all z(t — b) as its solutions.
Proposition 2.13. R/(m) is field iff m is prime.

Proof. m is a prime, then for any a ¢ (m), WT'S 3b € R, s.t. ab=1 (mod m). Since (a,m) = R,
there exists b,t € R s.t. ab+ mt = 1.

If m is not a prime, then it is not irreducible, and hence m = mimso where my, msy are not
units. Then my,mg are both zero-divisors in R/(m), contradicting with R/(m) being a field. O

Corollary 2.14. If f € k[z] is irreducible, then k[z]/(f(z)), often called residue field.
Lemma 2.15. R is PID. If a4,...,a, are all coprime to m, so is aj - - - an.

Proof. Since U(R/(m)) is a group. @ = a+ (m) € U(R/(m)) iff (a,m) = R. Hence if a1,...,anm
are all coprime to m, then a1 - - - an,, € U(R/(m)). O

Lemma 2.16. Suppose that ai,...,a, all divide m, and gecd(a;,a;) = 1 for all ¢ # j, then
ai - a,, divides m.

Proof. By induction, it is enough to consdier n = 2 case. Suppose ged(a,b) =1 and a | m, b | m.
There exists ¢ s.t. ac=m. WTS b | c. 3s,t s.t. as + bt =1, and hence acs + bet = ¢. b divides
LHS so divides RHS = c as well. O



10 CHAPTER 2. 2025/9/18

Theorem 2.17 (General Chinese Remainder Theorem). Suppose myq,...,m, are pairwise co-
prime. my - --m, = m. Then
x=by (mod m;)

(2.1)
x=b, (modm,)
has unique solution z mod m.
Proof. By Lemma , mj and 7t are coprime. Juj,vj € R s.t. uym; + vzt = 1. Then

m |1, mod my,
0, mod m; where i # j.

Take
- m
xr = E bj’l}jf
- mj
J=1

as a solution of (EI)
Suppose x, y are both solution of (@) Then z—y =0 (mod m;),j € {1,...,n}. By Lemma

Wehavem\m—yormzy(modm). O
Proposition 2.18. If m = my ---m,, my,...,m, are pairwise coprime, then

@:R/(m)— R/(my1) X -+ x R/(my)
a+ (m)— (a+ (Mmy),...,a+ (my))
is a ring isomorphism.
Proof. By CRT, ¢ is surjective. By Lemma ,  is injective. U

Corollary 2.19.
U(R/(m)) = U(R/(m1)) X --- x U(R/(mn)).
Corollary 2.20. R =7, m = p}* ---pi, then

n

ZImL=ZL) (py') L % -~ X L] (py) Z
U(Z/mZ) = U(Z] (py*) Z) % --- x U(Z] (p") Z)

To study the structure of U(Z/nZ), we only need to study each U(Z/(p;*)Z). Our goal is to
prove that U(Z/p"Z) is cyclic.

Proposition 2.21 (Step One). U(Z/pZ) is cyclic.
Lemma 2.22. Let f € k[z], k is a field. Then f has at most deg f roots in k.

Proof. By induction. n =1, OK.

Suppose that it holds for any m < n. Consider deg f = n + 1. If f has no root in k, trivial.
Otherwise, a € k is a root of k. f(x) = (x — a)g(x) with degg = n. By induction, the number
of roots of g in k < n. O

Proposition 2.23.

Pt —1=(@—-1)(z—2)---(x—p+1) (mod p). (2.2)
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Proof. (@) — P~ 1-1=(z-1) - (z—p+1) inFp[z]._Given that Vp{i?~1—1 =0 (mod p),
i.e. 1,...,p—1 are distinct roots of P! —1. By Lemma yaP 1= (x—1)- - (x—p+1). O

Another proof of Wilson’s theorem. Take x = 0, then

—1=(-1)(=2)(-p+1)=(@-Dp-2)-p+1)=pE-1! (modp). O
Proposition 2.24. If d | p— 1, then ¢ = 1 (mod p) has exactly d distinct roots in Z/pZ.
Proof. Since

:L.P—l 1= (.’L'd _ 1) (xd(%—l) 4+ 4+ 1) ,

with the LHS has p — 1 distinct roots, 2% — 1 at most d, and the other component at most
p—1—d, 2% — 1 must have exactly d roots. O

Proof of Proposition . Let ¢(n) = {i € U(Z/pZ) | i has order n in U(Z/pZ)}. Then

n=#{FeUEZML) 2" =1 (modm)} =3 v(d) =3 é(d).
d|

d|n

By Mobius inversion,

bin) = Y uld)Z = o(n).

d|n
Since ¥(p — 1) = ¢(p — 1) > 1, there exists i € U(Z/pZ) s.t. i has order p — 1. O
Proposition 2.25 (Step Two). U(Z/p"Z) is cyclic for any r > 1.

Proof. r =1, OK.

Suppose it holds for r = n > 1. Consider r = n + 1. By inductive assumption, da €
{1,...,p" =1} s.t. a?" " ®=1) =1 mod p" but not for smaller powers.

Consider a + kp, hope to determine some k s.t. a + kp is a primitive root of p"*1. This is
equivalent to finding a k s.t.

a0 D) #1 (mod p™*!)
TS (mod p™™), s|p—1buts#p— 1.

Since
(a+kp)"* = (@ +a" hpp" +---)
= a,PnS = alp"flS §é 1 (mod ()anrl).
And
(a + kp>(17—1)pn—1 _ a(p_l)pn—l n k‘p(p _ 1)pn_1a(p_1)p”71_1
=1+bp" +a tkp(p—1)p"~" mod p"*,
where 1+ bp"™ = a®=D7" 7" Take k(p — 1) £ ab and we are done. O

Goal: Solve 2™ = a (mod m).

Definition 2.5. If 2™ = a has solution, we call a an n-th power residue.
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Since for finite Abelian group G, we have
G2Z/mZ& - - BZ/mZ.

Lemma 3.1. 1 G2 Z/mZ & --- & Z/mZ, the equation nx = b is solvable in G, where n € Z
be G, iff ged(n,m;) | b; iff “72b; =0 (mod m;), where d; = ged(m;, n).

Goal: Find out when 2™ = a (mod m) is solvable.

Lemma 3.2.
(Z)2°7)* = 7./27 x 7./2°*Z,

Proof. by proving that (Z/2¢Z)* = {(-1)'57 | i =0,1,j =0,...,2¢72}. For ji, j2 s.t. 57t = 57
(mod 2¢), then 571792 = 1 (mod 2°). If
k 2 k — e
(1+4)°=1+4k+14 o) = 1 (mod 2°),

we have k = 2°72, O
Proposition 3.3. Suppose that a is odd. The equation
2" =a (mod2°%), e>3
has solution iff
1. n is odd, or

2. niseven, a =1 (mod 4), and

a1 =1 (mod 2°9),

where d = ged(e — 2, n).
Proof. Let k =2°72,5 has order k in (Z/2°722* = 727 x 7./2°2Z). Let a = (—1)*57*. Then

2
by ———— = 2
iq 2ed (@) 0 (mod 2)
i L = (mod 26—2)
7o ged(22,n) '

13
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If n is odd, the condition is trivial.
If niseven, i, =2 <= a=1 (mod 4), and

)2"’_2/ ged(2°72,n)

(5j“ =1 (mod2°) «<— a7/ eed@n) = (mod 2°). O

Corollary 3.4. For n = 2!ng, ged(ng,2) = 1, if ™ = a (mod 22+1) is solvable, so does 2" = a
(mod 2)¢ for all e > 2] + 1.
They have the same number of roots 2¢.

Proof. From z™ = a (mod 22'*1) being solvable, we have
a=1 (mod 4)
a?' "/ 8ed@n) = (mod 221y = &""'=1 (mod 2%*t1).
For any e > 2l 4 1, consider

e—(21+1) e
02" eed(2° % m) — 20772 (a21+1—2/2l>2 =(1+ 16221“)2 Yy (mod 2¢).

For e, the congruence equation has ged(n,2°~2) = 2! solutions. O
Known (Z/p"Z)™ is a cyclic group of order p"~!(p — 1) = ¢(p").

Proposition 3.5. 2" = a (mod p”) has solution iff 2™ = a (mod p) has solution, where
ged(n,p) = 1.

Proof. ™ = a (mod p") has solution iff
a®@®)/eed(m (")) = 1 (mod p) — P " (p=1)/ ged(np-1) — q (mod p").
Suppose that it works for r = 1.

aP~1/ gedp=1n) — 1 4 pp.

Then o
(1+pk)? =1 (modp"). O
Remark. The number of solutions is ged(n,p — 1).

For general 2" = a (mod m), write m = 2°p{* ---p;*. And the condition and the number of
solutions follows.

3.1 Quadratic residue

For p a prime, for any a € Z, define the Legendre symbol

1, ifaz?=a (mod p)
(a) =<1, ifz?# (mod p)
P 0, ifp]a.

a

Proposition 3.6. 1. ( ) =a"7 (mod p).
p
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oaea (8- ()0)

3. If a =b (mod p), (Z)

I
TN
Do
~—
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Proof. Since (Z/pZ)* = Z/(p—1)Z, x> = a (mod p) has solution iff a?~1/&«d(P=1.2) = 1 (mod p)

iff "z =1 (mod p).

Theorem 3.7 (Law of quadratic Reciprocity). 1. (Z}) = (—=1)*z (mod p).
2 p2-1

2. (5) =(-1)"s (mod p).

3. For p # q primes > 3,

Proof. 1. Trivial.

2. Consider 1,2,..., prl. Sincei=p—i=2- pgi (mod p) for ¢ odd. We have

2

Hence

3. Consider the map

¢ (Z/paZ)” — (Z/pZ)" x (Z/qZ)"
a— (e mod p,a mod q).

By CRT, ¢ is an isomorphism. Further, consider

51:{17...,1%1} x{1,....q—1}

So={1,....,p— 1} x {1%1}

-1
Sy= {1 P\ Gk g [ korp | K.

Since Sy, 99 contains exactly half of (Z/pZ)* x (Z/qZ)™, Sz half of (Z/pqZ)™, we have

H ¢($) up tozsign H .

€S, xrES3

(p; 1)’ = (D=1 21 (=3)(=1)* - (ip;l) (—1)%

O
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Consider ¢~" (T],cg, ). Since

S3={1,2,...,p—1
14+p,24+p,....p—14+p

1+(q%l—l>p,...,(p—1)+<%—l>p

q—1 p—1 q-—1 p—1
1+ =——p ---,7+7p}\{q,2q7---,7q}

2 2 2 2
So
II-@-m= (25 )= (B ) =o' (Z) (mod p).
Note that

= ((552))"=5(2)

and similarly S, = S3(2). We only need to find out the relation between S; and S». But

observe
1 q-1
si=((%5))
So=((p— 17,
so S1 = (—1)%1(%182. And we are done. O

Definition 3.1. The Jacobi symbol is defined for m = Hézl p;, where p; could be equal to p;,

()-6) )

Proposition 3.8. For n, m both odd, we have
n m m—1n—1
_ — = (=1 2 2

Proof. Suppose m = Hﬁzl D, = szl g;, then

() (2) =11 (2) 1 (2) =11 (2) (2) =TT = s s

where ged(m,n) = 1.

WTS,
pi—lgi—1 m-—-1n-1
= d 2 .
25 5 g (med?)
irj
This is easy since we have -1 = Z=15-1 (mod 2) for odd r, s. O
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Proposition 3.9. Reproof of

Proof.

()-)- G- ()

p—3
0
Remark. In the previous proof, we ommitted the proof of
_1 n—1
) = (21
which is easy.
3.2 Quadratic Gauss sum
27
Let ( :==e7 .
Lemma 3.10. For a € {0,...,p — 1}, let
p—1 .
Zé_at{o, lfa#O
pr p, ifa=0.
Proof. If a = 0, (* = 1. We are done.
If a #£ 0,
p—1 p—1 p—1
(ant> Ca :Zgat — ant(ca_ 1) =0
t=0 t=0 t=0
Since (% # 0, we are done. O
Lemma 3.11.
p—1 "
=0 \P
Proof. There are exactly prl a€{l,...,p— 1} satisfying 22 = a (mod p). O
Definition 3.2. Let )
—
t
=y (1)
t=0 p

be the quadratic Gauss sum.
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Proposition 3.12. g, = <a>gl, for ged(a,p) = 1.
p

w2 ()() () :

Proof.

Proposition 3.13.
Proof. Consider Zi;é Ja9—as

D Gagoa =Y > (™ <x> > <y> => (w) PSEEED Y <x>p =p(p—1)
a=0 p y=0 p p a=0 p

a=0x=0 x,y =0

plp—1) = Z—Z(p) (;)g%—@l)(pl)g% O

Proposition 3.14. Reproof of quadratic reciprocity law.

With go = O,

Proof. Consider gf_l. Let g2 = p(—l)p%1 :=p*. So

On the other hand,

91 = (Z ¢! <t)> € gq +qZ[(] = <q>91 + qZ[¢].
=0\ p

Cancal out one g; on both sides,

Therefore,
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Recall g1 = (—1)FT_1p, SO
_J£yp, p=1 (mod4)
n= {j:i\/f), p=3 (mod 4).
Goal. Prove that
[P, p=1 (mod4)
7= {z\/ﬁ, p=3 (mod 4).

Consider
pz;l i ; pTl p 1 1)271 . .
H (C2171 i 47(21 1) ) (CQ’L 1 —(2i— 1)) (§7(2'L*1) i 42271>
i=1 i=1 i=1

_ H (1 _C—2(2i—1)) H ( 2(21 1)) (- 1)%.

Let S={2i—1]|i=1,...., 5 bu{-(2i—-1)|i=1,....55 } ={p—2,...,1,-1,...,—p+2},
which is a complete set Inodulo P, and so is 25. Hence the original expression is equal to

1

1-¢) (=17 =p(-1) = =gi

1

p

%

where the last equation is because of the following lemma.

Lemma 4.1.
P —1

=14ax+ - +aP L
z—1

Next we prove

I 2j-1  ~—2i41y _ JVD» P=1 (mod 4)
J‘]l(gj < )_{i\/ﬁ, p=3 (mod 4).

This is because
p—1

LHS = H 2i sin

Jj=1

2m(2j — 1)

19
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Since the absolute value has been determined already, we only need to consider the signature.

We have 0 < 22U < on where 0 < 22D < 7 iff j < 22 Tf p = 1 (mod 4), then 25!
is even, the signature is iprl(—l)prl = (—1)pT1 = 1. If p = 3 (mod 4), then the signature is
i () == =

Then it is time to prove

-

p—

2

(<27L71 _ 47(21'71)) = g1.

[

i=

Take €, € {£1} s.t.

p—1

2

H (CQi—l _ C_(%_l)) —epg1 = 0.

=1
p—1 . . . .
Let f(z) == [[,2, (a% 7! —aP~ (D) —¢, Zf;ll (i)xz is a polynomial. f(¢) = 0. Study the
minimal irreducible polynomial of ¢ over Z. (P =1 and 14+ (4 ---+ (P~ = % =0.

Lemma 4.2.
Flz):=1+24 - 2P !

is irreducible over Q.

Proof.
(z+1)P -1 2L\ .
i=1

x
The coefficients of F/(z+1) form an Eisenstein series, so F'(x+1) is irreducible and so is F/(z). O

We have (1 + -+ 2P~1) | f(z). On the other hand, f(1) = 0. Hence (1 —2P) = (z — 1)(1 +
<4 aP71) | f(x) and we can write

f(@) = (1= a")g(x), (4.1)

where g(x) € Q[x].
Take x = e*. Compare 2"5 of the Taylor expansions of two functions in (@)

e# B _ o222 — (97 1) — 2(=2i 4+ 1) + O(2%) = 2(4i — 2) + O(2?).

Hence the coefficient of 2”2 on the left hand side is

—1

S

2

. S (i 1
H(412)6p;<p>l (L—l)['

i=1 2

While on the right hand side,

(1—€")g(e®*) =0 (mod p).

This gives the congruence

() e-2=03 (2)= =ot-1=e tmoan,
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while

(p;1>!£[1(42'_2):2><~-~><(p—l)><1><--~><(p—2)=(p—1)!5—1 (mod p).

Together we obtain €, = 1. Goal achieved.

4.1 Gauss and Jacobi sum

Fact. F), := Z/pZis a finite field. Call x : (F)5, x) — C* a multiplicative character if it is a group
homomorphism. Call x : (Fp,+) = C* a additive character if it is a group homomorphism.
Hence, (5) : F — C* is a multliplicative character. a +— ( is a additive character. So we

can see the GaU.SS sum L
p— .
7 .
ga::§::<p><m

i=1
as the sum of a mult-character multiplying an add-character.
For a general multiplicative character x of F,, we put

p—1
ga(X) =Y _ x(i)¢*.
i=0
where
0
x(0) = {1’ * f ‘
b X - 6?

where €(a) = 1 is the trivial character.

Proposition 4.3. 1.

9a(x) = 91(x)x(a),
if x # e
2. gq(€) =0, for a # 0.
3. a=0,x # ¢, then go(x) = 0.

4. a=0,x = ¢, then go(e) = p.

Proof. 1.
p—1 p—1
9a(X) = > x()¢* = x(@) Y x(ia)¢™ = x(a)g1 (x)-
i=0 i=1
2.

p—1 ‘ 1 cop
gole) = ZCM =7 —CC” =0.
i=0

3. Since x non-trivial, there exists b € F* s.t. {(b) # 1.
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4. Trivial. O

Proposition 4.4.
9.0 = Vb, §F#e
Proof. Consider

:)Zéga(x)g (x)=§§x C‘”‘Zx )¢~ “y—ii‘;:z‘;x( )ZC‘“" ¥ = Zp
Suppose x # €,
pz_:;ga(x)ga(x) = g1(x)91(x) pz_i x(@)x(a) = (p = D]g1 (\)I*.
Hence |ga(x)| = [91(x)| = v/P- 0
Another Proof.
31 (0900 = Zx Cwa <v—p§jjp§jlx( Jer v—zckz (5).

For k # 0, ny, : BN — Fp,y — %k is injective, and Im(ng) = F,, \ {1}. So the original expression
is equal to

ng Y+ CP(p-1)=1+p—1=p. O
For two multilicative character x and A of IF,,, we define
JOGA) = D x(@A®),

a+b=1

called the Jacobi sum.
Goal. Compute the number of solutions of 2™ + y™ =1 in F,,, denoted by N(z™ + y" = 1).

Proposition 4.5. For x, A # ¢, and xA # ¢,
L J(e,€) =p.
2. J(e,x) = J(x,€) = 0.
3. JOox7h) = —x(-1).
4. J(x,\) = LB,

g1(xA)

Proof. The first two is trivial.

p—1

=Y () = S - x-1 = ().
=0

a#0

J(X,>\)91(X>\) = Z Zx)\ Z ZX ac bC Cac-i—bc

a+b=1 a+b=1 c=0
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Take d = ac, f = bc, then the original expression becomes

D X@ECNE = 910091 (V). O
d,f
Recall that
1, a=0
N@E"=a)={d, o7 =1 (mod p)
0, otherwise,

where d = ged(n,p — 1). Hence

N@"+y"=1)= > N@@"=a)N(@" =b).
a+b=1

Definition 4.1. For a character x, we call d its order if xy¥(a) = 1 for all a € F) and any
d' | d,d" # d, there exists a € F )5, x%(a) # 1.

Proposition 4.6. Let x be any character of order d = ged(n,p — 1), then

Proof. a = 0. Trivial.
a # 0 and a"T =1 (mod p), take g a primitive root modulo p, a = g%¢. Hence

d—1 ) d—1 }
D x@) =" (x(9)™ =d.
1=0 1=0

a # 0 and T # 1 (mod p), take g a p.r. and a = g%*, where gcd (s, dil) = 1. There exists
u,v s.t. us + d#'llv = 1. So x(¢g%*) # 1, because otherwise we have y(g4%) = y(ghus+dv) =

x(g%) = 1, which is impossible. It follows that the original expression is equal to

d—1 ) d—1 )
X% =Y x(g™)™ =o0. m
i=0 =0
We now have
d—1 ‘ d—1 4 d—1d-1 . 4
N@"+y"=1)= > N@"=aN@E"=b= Y > x'@Y X0 =2 J'x)
a+b=1 a+b=1i=0 §j=0 i=0 j=0
d—1 ) d—1 . d—1 . . _ .
=J(e)+ > JEex)+D_ J0L9+ D> IO+ D, T X)
i=0 i=1 i=1 i,570,i4j#0
91(x")g1 ()
=p+(—x(-))p-1+ TR IR
p(xCD)p-D+ Y )
1,j7#0,i+j7#0

As a result,
IN@" +y" =1) =p+x(=1)(p—1)| < (d* = 3d +2)/p.
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Applications. When n = 2, take y = (5) Then

p—1

N@?+y>=1)=p—(-1)"=.
When n = 3, take x that has order 3. Then
N(@@® 4y’ =1) =p—2x(=1) + J(x,; ) + J(x: X)
Because x3(—1) = x?(-1) = 1,
IN(@@" +y" =1) —p+2| <2/p.

Proposition 4.7. If p = 1 (mod 4), then there exists a unique integer A and B s.t. A2+ B? = p,
up to sign.

Proof. Ezistence. Since p = 1 (mod 4), we can construct a character x of order 4 by assigning
the value of a primitive root g to i, x(g) = i.
Consider J(x, x) = 2,441 X(a)x(b) € Z[i], we have

VPVP
(¢ X)) b VP
Let J(x,x) = A+ Bi, then A? + B? = p.

Uniqueness. Suppose that A% + B? = C? + D? = p. We know U(Z[i]) = {£1,+i} and Z[{]
is a Euclidean domain and thus a UFD. It suffices to prove that A + B is irreducible. Suppose
that A+ Bi = (a+bi)(c+di) and a +bi,c+di ¢ Z[i]. But p= A%+ B? = (a®> + b*)(c®? +d?). A
contradiction. O

Proposition 4.8. If p=1 (mod 3), then there are integers A and B s.t. p = A> — AB + B2

Proof. Take x : F)f — C*, g+ w. Similarly, [J(x, x)| = /p. Let J(x,x) = a + bw and we have
a? —ab+ b =p. O
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Proposition 5.1. Suppose p = 1 (mod 3). There exists a unique 4, B (up to sign) s.t. A% +
27B2% = 4p.
Recall that we have proven there exists a,b s.t. a® — ab+ b = p, so it suffices to prove that

4a? — 4ab+ 4b? can be written as the desired form. Notice that 4a? — 4ab+ 4b? = (2a — b)? + 3b2,
but b might not be divisible by 3.

Lemma 5.2. For a? —ab+b* =p, p=1 (mod 3), one of a, b and a — b is divisible by 3.
Proof. If a # 0 (mod 3) and b # 0 (mod 3), then a® =b* =1 (mod 3), so
a*>—ab+bv*=2—ab=p=1 (mod3) = ab (mod3) = a=b (mod3). O

Proof of Proposistion . Since a? — ab+ b* = (a — b)? — (a — b)(—b) + (—b)?, we can conlude
that there exists a,b s.t. 3 | @ and a® — ab + b* = p. This completes the proof of existence of
A2 4+ 27TB? = p.
Now for uniqueness. Consider
A?+27B*>  A+3y3iB A-3V3iB
4 B 2 2 ’

where each component on the right hand side lies in Q[w], with norm equal to p. Given that
A = B (mod 2), we have

A+3V3iB A+3B
2 2

Since Z[w] is a Euclidean domain, % is irreducible. Suppose A} +27B? = A3+ 27B2 = p.
Then WLOG,

+ 3wB € Z[w].

Ay +3V3iB; | Ag + 24/3iBs
2 2 ’

A1 +3V3iB; Ay +2V3iBy
2 T 2
where u is a unit. However, we know U(Z[w]) contains elements whose norms are equal to 1, so
U(Zw]) = {£1,tw, (1 + w)}.
If w = w, we could obtain A; = 3B5, and 3 | Ay, so 3 | p, a contradiction. Similarly, we can
tell that —w, (1 4+ w) is also not possible.
Hence u = +1, giving the uniqueness. O

or

25
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Proposition 5.3. If x is a character of order 3, and J(x,x) = a + bw, then a = —1 (mod 3)
and b =0 (mod 3).

Proof. Since x # X,
- 910091 (%)
ST

00X g91(x?)

Calculate
Ppo1

0T = 3@ = 3 @G = x(-Dar () = a1 (x),

where the last equation is given by the fact that x has order 3.
Recall |g1(x)| = /p; so

i) =T 0P = TG x)p = J(x,x)  (mod 3).

On the other hand,

p—1 3 p1 p—1
gr(x) = (Zx(i) ;) =50 (¢)* =3¢ = ~1 mod 3Z[¢,, wl.

=0 i=1

So
Zw] 3 J(x,x) = -1 mod 3Z[(,w],

and since Z[w] N3 Z[w, ] = 3Z[w], we have J(x, x) = —1 mod 3Z[w]. It follows that
a+bw=-1 mod3Zw] = a=-1 (mod3) b=0 (mod 3). O

Corollary 5.4. N(z? +y?> = 1) = p — 2 + A, where A is the unique positive solution of
A? 1 27B? = 4p.

Proof. Calculate

N@*+y2=1)=> > Jx' X))

i=0 j=0

= J(e,€) +2J(x,€) + 27 (x% €) + 20 (x, x*) + T (6, x) + J(x*, X*)
=p—2+J0x.X) + J(X*,x*) =p— 2+ 2Re(J(x, X))
=p—2+4(2a D).

Since |2J(x, X)|? = 4p? = (2a — b)? + 3b? = (2a — b)? + 270'%, where the last equation is because
b=0 (mod 3), from the uniqueness of A% +27B? = 4p, 2a — b = A up to sign. O

5.1 Finite Fields

Known. For prime p, F is cyclic. We claim that any finite field is of the form ), which is a
field extension of ), for some p, especially of order p".

Theorem 5.5. F is cyclic.
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Proof. For o € F{, let d be the smallest positive integer s.t. a? =1, and call d the order of a.
aP~l =1. Let ¢(d) := #{a € F, | a has order d}. Then p" — 1 = > dpr—1 ¥(d) and

> y(d) =#{a]a’—1=0} =0.
d'|d

By Mobius inversion,

o)=Y du () = o).

d'|d
Hence ¢(p" — 1) = 0, there exists a primitive root of F;, and it is cyclic. O

We are interested in considering the finite extensions of IF,,, or F, = F,(a). To prove that
each finite field is isomorphic to some F,,-, and we are going to achieve this goal by the following
three steps.

L. Fpr = {2 €F,| 2P —x=0}is a field.
2. Any finite field F, there exists p s.t. pF' = 0.

3. I is some algebraic extension of F), i.e. F''=F,[ay,...,a;], so we can embed F' into F,
with map ¢ : F' — F,. As ¢(F) C F,- and they have the same size as sets, ¢(F) = Fpr.
Hence |F| = p" and all such F is isomorphic.

Proposition 5.6. General finite field F' contains [, for some p.

Proof. 1 € F. Take m be the minimal positive integer s.t. m -1 = 0. Prove m = p for some
p. Suppose otherwise, m = mimso. This leads to m; -1 =0 or ms - 1 = 0, contradictory to the
minimality of m. Hence we have F, = {0,1,...,p—1} C F. O

Remark. p in the previous proof is called the character of F.
Proposition 5.7. The previously defined - is a field.
Proof. For a, 8 € Fpr,
(@+pBP —(a+p)=a” +p”" —a—B=0
(aB)” —aB=af—af =0

NN 1 1 1
(,) = __=0. O
«Q

Proposition 5.8. Any F,» C Fps iff r | s.
Proof. “ <=7
Fpr CFp = (VaeF,st. o —a=0 = o —a=0)
C= P —paP —x = 2P T 1P T -1 = p 1| p =1 = r]|s. O
Corollary 5.9. For any p”, there exists a finite field F' s.t. |F| =p".

Proof. Take F = {;v €T, | P — = 0}. Since (zP" — x)’ = —1 # 0, the polynomal has no
multiple roots and hence |F| = p". O
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Proposition 5.10. Any irreducible polynomial f € Fy[z] of degree d divides " — g

Proof. Take a be a root of f in F,. We know F,[a]| = p?, so F, = F,a, and a?' —a =0. On
the other hand, f is irreducible, so it is the minimal polynomial of c. f | " — 7. O

Corollary 5.11. Any irreducible polynomial f € F,[x] of degree d divides 27" — z iff d | n.
Proof. We first prove a lemma.

Lemma 5.12. Any irreducible f of order d’ > d, f ¢ P —

Proof. Suppose f | 2?" — 2. Take a a root of f. Then o' —a = 0, so a € F,a. But
|Fpa| = p? > pt = |Fpa|, a contradicition to o € Fpa. O

By virtue of the lemma, we are able to prove that any irreducible f of order d’, f | P
iff d' | d. O

Theorem 5.13. Let Fy(x) be the product of all distinct irreducible polynomials of degree d in
Fp[z]. Then Vn > 1 we have

HFd(x) =" — .

d|n
Proof. Since F,[z] is a Euclidean domain, we can write
s T o= T s
f irreducible f irreducible,deg f|n

So f | Fy(z) for some d and it suffices to prove that ey = 1. Suppose not. Let fy be one of f s.t.
€fo Z 2.

! /

=) = (T ) = s (1T )+ (T
f

f#fo f#fo
Plugging in « a root of f provides a contradiction. O

Let T,; be the number of irreducible polynomial of degree d in F. From deg(Fy) = Tyd, we have
Ed‘n T,d = p™. By Mobius inversion,

1 ny 4
1= 2u(G)r
d|n
We turn to examine the equations in finite fields.

Theorem 5.14 (Chevally’s theorem). If F = Fy, ¢ = p", let f(z) € Flz] := Flz1,..., %)
Suppose

1. F(0) = 0.
2. n>deg f=max;er{ir + - +in} =d, where f =3_,, it - xin

Then f has at least ¢ roots in A™(F) = {(z1,...,2,) € F"}.
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Proof. Take Ny := 3, cpnp (1 — f(a)?71) is the number of roots of f. Then it is enough to
show ¢ | Ny.

degf =d, deg f471 =d(q—1). f7! = 2161 cjwy' ---ajr. For any j € I, at least one of
i €{1,...,n} satisfies j; < ¢ — 1. Fix other items and let x; runs through F.

Lemma 5.15.
|F|_17 q—l‘Z,Z#O,

doa'=SIF, =0,

zel 0, qg—1¢ti.
Soq | uepn ¢zl - zd» and hence
a1 Y f@Tt = qINy = N;>q O
acFn
More generally, we have the following theorem.

Theorem 5.16 (Ax, Katz). Let f1,...,fr € Flx1,...,2,] be polynomials of degree d; > 1.
Suppose >_._, d; < n, then let My = [%-‘ Then Ny := {z € Apn | fi(x) = 0} satisfies
g7 | Ny. N

5.2 Hasse-Weil Zeta Function

Definition 5.1. Define a variety X over Fy by X := {(z1,...,2,) € F, | fi(z) =0,1 <i <r}.
And X (Fgm) == {(21,...,25) €Fgm | fi(z) =--- = fr(2z) = 0}

Definition 5.2. If N,,(X) := #X (F,m ), then the Hasse-Weil zeta function is defined to be
Np(X)
Z(X,t)=exp Non(X) Q[[t]].
m>1 m
Example. X = A} | | X (Fpm)| = | N (X)| = p™™.

1

2(hg) = exp | 3 Footm | = e = p

m>1

Definition 5.3. Define Py := (Ag;l \{O}) / ~, where ~ is defined by

(al, ey an+1) ~ (bl, ey bn+1) <~ 40 75 cec Fp s.t. a;c =b;.
Example. Calculate
N, ()= P
m( ]Fp) p7n _ 1

e (n+1)m 1 1 1
p
Z(P2 ) = p— LU [ .
( FP) exp (2:1 m(pm_l) ) 1—t¢ ]__pnt
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L’algeébre n’est qu’une géométrie écrite; la géometrie n’est qu’'une algebre figurée.
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6.1 Hasse-Weil zeta function

Last time we defined the function locally over IF,,, where

Z(X,T) :=exp (i WT’”) .

m=1

Theorem 6.1 (Weil conjecture). Let X be a smooth projective variety over F,,.

1. (Rationality). Z(X,s) = 5(7 € QD).
2. (Punctional equation). ( ) = 4pdim XE2TE 7(X T), where E is the Euler charac-
teristic number of X.

3. Z(X,T) = D5t where Py € Z[T). I we write Pi(T) = [];(1 — a;;T) with

aij € C, then |a;;| = p=.

Remark (Special case). If f € F,[z] is a homogenous polynomial of degree d, take the hypersurface
defined by f.
{x €F P ‘ f = 0}

Then dim Hf =n — 1, and

pPTEY"

D=y

where roots has norm p“z pure of weight n — 1. deg P(T) = d~*((d — 1)"+! + (=1)"*1(d — 1)).
Definition 6.1 (Global version). Let K be a number field.
Z(V,8) = 11 Z(Vo, IN(0)I°),
p prime ideal in Oy,
where N(p) the norm of p as prime ideal and

Vo={zeF,|fi modp,...,[m modp}ﬁl.

Lonly when Vp has good reduction

31
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Example (Riemann zeta function).

i?; Zvec@yr )= 3 (1- 1)

s
p prime p

In the following we will mostly be concerned with the Riemann zeta function and its gener-
alization, the L function.

Lemma 6.2.

R ICEDE (e

Proof. Fix s. For N, consider primes p < N.
N 0o [e'S)
1 1 1
So<Il(S5) <2
n=1 p<N \k=0 n=1
By squeeze lemma, we complete the proof. O

We denote the Riemann zeta function by

-1
and (1 - pi) the Euler factor of ((s).

We would like to find the meromorphic extension of f(s) := > " | - to C. Known f(s) is
defined for Re(s) > 1, and

(1-2)s9=L Lol oSSt

n=1

is defined for Re(s) > 0 (Dirichlet criterion). Define

Z( n"

f(s) = =—2— -z

WTS f(s) has a unique pole at s = 1, which is simple. Zeros of 1 — 2% =Qares=1-— g’ﬂ%,

n € Z. But the nominator may be zero, so we consider another extension. Since if F} and F5
are the meromorphic extension of f over Re(s) > 0, then F} = F5, we consider

3\ o~ 1 1 1 2

S8/ e 12 3
which converges over Re(s) > 0. Define F» = _i. The possible pole points s = 1 — 2’”” for
33
n € Z. Note o o
™ni ™ni
(- nenfn{i- 0 ez} -1
as ﬁi—g irrational. Hence
— 1
((s) = e
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can be extended to Re(s) > 0. In the strip 0 < Re(s) < 1, we have

¢(s) = 2°7° tsin (%) (1 —s)¢(1—s).

By means of this functional equation, we can in fact extend {(s) to the whole plane C.

Known ((s) = -%5 +n(s) around s = 1, where 7(s) is analytic. We would like to determine

a.
Lemma 6.3.

lim ((s)(s—1)=1

R3>s—1t

Proof.

Hence after summation

o< [ <>
n 2 ts s
n=2 n=1
where
<1 1 1™ 1 1
—dt = = .
9 t° s—1ts7t|, s—12s71

Hence we have (s —1)((s) — (s—1) = (s—1) Y07, -1 < 515 and (s —1){(s) > 5:=r. By squeeze
lemma, we have

lim (s —1){(s) = 1. O

s—1+

6.2 Dirichlet density theorem

Definition 6.2. A set of positive prime P is said to have Dirichlet density if

1
d(P) := lim @
s—1t In (L)

s—1
exists.
Proposition 6.4. 1. If P is finite, then d(P) = 0.
2. If P = {primes} \ {finite ptimes}, then d(P) = 1.
Proof. 1. The nominator is finite but the divisor tends to infinity.

2. WLOG, let P = {primes}. By a previous lemma,

lim <(s)

s—1+ ln(sil)

=1

So we only need to consider

1 1 =1 >
DETITIOES DR D) D= D

1
s ks
P p k=1 p p k=2

kp
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Moreover
= 1 1/ 2 4 1 (=
1) I-=ED3) SLTED I C- P TR D S pOPay
k=2 p k=2 n=2 k=2 k=2 =1
=11
_ZEkafl
k=2
is bounded.
Hence d(P) = 1. O

Proposition 6.5. There exists P s.t. d(P) is not defined.

Proof. We know when s — 17,

—1
In (571)
So there exists s > 1 s.t. .
Zp pel > §
i .
In (31—1> 4
Further there exists N7 > 0 s.t.
1
1 .
In <81*1> 4

And for e = é, there exists Ny > Nj s.t.

Zp>N p%l 1
CIESIEE

We know by the previous proposition,

1
lim Z”<N11 P .
s—1 ln (s—l)
Take 1 < s9 < 571 s.t.
1
ZI)<Nl P2 < l
1
In (82*1> 8
And N3 > Ny s.t.
1
2 Na<p<Ns p7 _ 1

In (521—1)

Continue this process, to get a series of N1, No, N3, ... and s1, o, S3, ... such that when s = sy,
the predominant component in the original summation

5,
In (311>
is those satisfying p € [No;—1, No;]. Take P = {p | p € [Nak—1, Nok],k € Z, and then according

to the process, the sum will be around % when s = s9;,_1 and around % when s = so;,. Hence it
converges not. O
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Definition 6.3. If we have x : (Z/nZ)* — C*, define the Dirichlet character

x:Z — C*
o 4 X, ged(m,n) =1
0, ged(m,n) # 1.

Proposition 6.6. 1. x(n+mk) = x(n), Vn,k € Z.

2. x(nk) = x(n)x(k).

3. x(n) #0, Vged(n,m) = 1.

For A an abelian group, let A := {x : A — C* | group homomorphism}.
Lemma 6.7. Ais a group.

Lemma 6.8. Finite abelian group is isomorphic to

l

P @z/riz).

i=1
In particular, when ry |79 | -+ | 7.
Lemma 6.9. A2 A for finite abelian group.

Proof. Let A = {gil coegin |1 <4y < rj}, then

l
A= {X D g — Cf;} = @(Z/TiZ).
i=1

Lemma 6.10. A a finite abelian group, x, 9 € Aand n= #A. Then

1Y e x(@)¥(b) = nd(x, ).

2. ergx(a)x(b) =nd(a,b).
Corollary 6.11. For x, Dirichlet characters modulo m, and a,b € Z,
L Y05 x(a)x(@) = ¢(m)3(x, ).

2. ZX Dirichlet character X(a)X( ) = 5((1’ b>¢(m)7 where

1, a=b (mod m)

0, otherwise.

0(a,b) = {

Definition 6.4. For x a Dirichlet characteristic modulo m, define the Dirichlet L-function

TR LS, ()

n=1 p

35
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Remark. If x¢ is trivial characteristic, then

1\ !
¢(s) = L(xo, 5) H (1 - E)
plm
Corollary 6.12. If m =1, then
L(XO) S) = C(S)
for Re(s) > 1.
Our goal is the following theorem.
Theorem 6.13 (Dirichlet prime density theorem).
1
d(P,) = —,
Pa) = Gy
where P, = {p = a (mod m) | p is a prime}.
Definition 6.5.
o~ X(M)p*
G(Xa S) = Z Z T = IH(L(X, S))
p k=1
It is defined over Re(s) > 1.
Proposition 6.14.
lim Glxo, ) =1,
s—1t ln (ﬁ)

and G(x, s) is bounded for x # xo.

This proposition leads to the Dirichlet prime density theorem, as

CHAPTER 6. 2025/10/23

I k —sk
T X@Gs)  TX@ N, Y M= Y@ T, x(e)p
lim = lim = lim
s—1+ ln (5—%) s—1t 1n <si1> s—1+ 1n (sil)
. x(B)p— p(m)p~*
= lim Zzaizhm Z —— =1.
st P X In (511> st p,p=a (mod m) In (1is)
—1
Proof of Proposition . Since L(xo,s) = ¢(s)/ [1,m (1 - pi) , and
lim 71n§(s) =
s—1t ln (sil)
we indeed have
lim w -1
s—1t In o

Lemma 6.15. For x # xo, LX, s) has an extension to an analytic function on Re(s) > 0.
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Take F(s) := exp (ZX G(x, s)) = [I, L(x,s). Then for real s > 1, we have F'(s) > 1. as

k\,,—sk m —sk
F(s) =exp ZZ% = exp Z % >1,

X p.k>1 p,k,pF=1 (mod m)

where the last equality is from

~ J¢(m), a=1 (mod m)
;X(a) B {0, a#1 (modm). -

Proposition 6.16 (Complex x). If x is complex, i.e., {x(a) | a € Z} € R If x is a complex
characterisitc modulo m, then L(x, 1) # 0.
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